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ACCOMPLISHMENTS

In the period of October 1, 1992 to September 30, 1993, the Principal Investigator (PI)

with the assistance of three graduate students have achieved the following accomplishments

under Grant No. NAG-I-648. This grant is jointly supported by the NASA Langley Research

Center, Aeroelastic Analysis and Optimization Branch (Monitors: Dr. Samuel R. Bland and

Dr. Woodrow Whitlow, Jr.--Branch Head) and the Air Force Office of Scientific Research,

Aeronautics Directorate -- Unsteady Aerodynamics Program (Monitor: Major Daniel Fant.).

I. Publications:

I. 1. Kandil, O. A. and Flanagan, M. W., "Vertical Tail Buffet in Vortex Breakdown Flows,"

Fifth International Symposium on Computational Fluid Dynamics Sendal, Japan, August

31-September 3, 1993, Vol. I, pp. 432-437, (a copy is enclosed).

1.2. Kandil, O. A., Kandil, H. A. and Massey, S. J., "Simulation of Tail Buffet Using

Delta Wing-Vertical Tail Configuration," AIAA 93-3688-CP, AIAA Atmospheric Flight

Mechanics Conference, Monterey, CA, August 9-11, 1993, pp. 566-577, (a copy is

enclosed).

1.3. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Shock-Vortex Interaction Over a 65-Degree

Delta Wing in Transonic Flow," AIAA 93-2973, AIAA 24th Fluid Dynamics Confer-

ence, Orlando, FL, July 6-9, 1993 (a copy is enclosed).
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1.4. Kandil, H. A., Kandil, O. A. and Liu, C. H., "Supersonic Vortex Breakdown Over a

Delta Wing in Transonic Flow," AIAA 93-3472, CP, AIAA 1 lth Applied Aerodynamics

Conference, Monterey, CA, August 11-13, 1993, Vol. I, pp. 582-596, (a copy is

enclosed).

1.5. Kandil, O. A., "Simulation of Vertical Tail Buffet," NAS Technical Summaries Report,

to be published in December 1993.

1.6. Kandil, O. A. and Salman, A. A., "Prediction and Control of Slender Wing Rock,"

ICAS Paper No. 92-4.7.2-CP, 18th ICAS Congress, Beijing, People's Republic of

China, September 21-25, 1992, Vol. 2, pp. 1430-1441.

II. Abstracts Submitted to Technical Conferences:

II. 1. Kandil, O. A. and Massey, S. J., "Computation of Vortex-Breakdown Induced Tail Buf-

fet Undergoing Bending and Torsional Vibrations," Submitted to AIAA/ASME/ASCE

35th SDM Conference, Hilton Head, SC, April 18-21, 1994.

II.2. Kandil, O. A., Kandil, H. A. and Kalisch, M., "Pitching Oscillation of a 65-degree Delta

Wing in Transonic Flow," Submitted to AIAA/ASME/ASCE 35th SDM Conference,

Hilton Head, SC, April 18-21, 1994.

III. Conference Presentations and Activities:

III.1. "Simulation of Tail Buffet Using Delta Wing-Vertical Tail Configuration," AIAA

Atmospheric Flight Mechanics Conference, Monterey, CA, August 9-11, 1993. Prof.

O. A. Kandil gave the presentation.

III.2. "Vertical Tail Buffet in Vortex Breakdown Flows," Fifth International Symposium on

Computational Fluid Dynamics, Sendai, Japan, August 31-September 3, 1993. Mr.

Mark W. Flanagan gave the presentation.
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III.3. "Shock-VortexInteractionOver a 65-DegreeDelta Wing in TransonicFlow," AIAA

24th Fluid DynamicsConference,Orlando,FL, July 6-9, 1993. Prof. O. A. Kandil

gavethe presentation.

III.4. "SupersonicVortexBreakdownOver a Delta Wing in TransonicFlow," AIAA 1lth

Applied AerodynamicsConference,Monterey,CA, August9-11, 1993. Prof. O. A.

Kandil gavethe presentation.

III.5. Chairing a sessiontitled, "Vortex DominatedFlows I," AIAA 24th Fluid Dynamics

Conference,Orlando,FL, July 6-9, 1993.Prof. O. A. Kandil chairedthe session.

III.6. "PredictionandControlof SlenderWingRock," 18thICAS Congress,Beijing,People's

Republicof China,September21-25, 1992. Prof. O. A. Kandil gavethepresentation.

III.7. "Simulation of Vertical Tail Buffet," Seminar Series,School of Mechanicaland

AerospaceEngineering,Old DominionUniversity,Norfolk, VA, September24, 1993.

Prof. O. A. Kandil gavethe presentation.

III.8. Chairinga sessiontitled, "Flow Control," IUTAM Symposiumon Fluid Dynamicsof

High Angle of Attack, Universityof Tokyo,Japan,September13-17, 1992.Prof. O.

A. Kandil chairedthe session.

III.9. Invitedby theJapaneseInstituteof SpaceandAstronauticalSciencesto givea seminar

on "CFD/Dynamics/ControlInteraction,"Tokyo, Japan,September18, 1992.Prof. O.

A. Kandil gavea presentation.
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IV. Interaction with Other Federal Agencies:

1. AFOSR: A report has been submitted to Major Daniel Fant, manager of the unsteady

program at the AFOSR on September 7, 1993. The report summarizes the important

research results in supersonic vortex breakdown on delta wings and vertical-tail buffet

problem. It also covers the concepts and ideas that benefit air force applications. It

covers the period of October 1-September 30, 1993. Major Fant is supporting part of the

present work for the FY 1994 at $35 K.

2. Numerical Aerodynamics Simulation:

A proposal for computing resources has been submitted to the NAS facilities at NASA

Ames in November 1992. The proposal has been approved for 1,100 hrs of computational

time. Additional 500 hrs have been added to our account in July 1993. A summary has

been submitted in July 1993 for publication in the NAS Annual Summaries.

3. The Principal Investigator helped researchers at two branches at NASA Langley and a

researcher at the Air Force Academy in Colorado to correct boundary conditions for

unsteady flow calculation in the computer code "CFL3D".

V. Graduate Students:

The Principal Investigator has three graduate students who are working on their M.S. thesis and

Ph.D. dissertation. They are supported under this grant with the funds from NASA Langley

Research Center and AFOSR. These students are:

V.1. Mr. Mark W. Flanagan (US Citizen): He is supported under the present grant and a

supplement from the Aerospace department. He is expected to defend his M.S. thesis

in October 1993. He thesis is titled "Computational Simulation of Vertical Tail Buffet

in a Configured Duct." He is staying for his Ph.D. degree in the Aerospace Engineering
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Department.His Ph.D.dissertationwill focuson simulationandoptimizationcontrol

of three-dimensionaltail buffet phenomenon.

V.2. Mr. StevenJ. Massey(US Citizen): He is supportedunderthe presentgrantand a

supplementfrom theAerospacedepartment.He is expectedto defendhisM.S. thesisin

March,1994.Histhesisis titled "ComputationalSimulationof TailBuffetUsinga Delta

Wing-VerticalTail Configuration."He is stayingfor his Ph.D.dissertationwhich will

focuson simulationandoptimizationalcontrol of tail buffet for bendingandtorsional

responses.

V.3. Ms. Margaret Kalisch (US Citizen): She joined our research group in May 1993.

She has a M.S. degree from the Naval Postgraduate School in Monterey, CA. She is

working on her Ph.D. degree in Aerospace Engineering. She is currently supported

under the present grant. Her Ph.D. dissertation will focus on multi-mode coupling

(roll/pitch and/or yaw) of a delta wing during vortex breakdown in transonic regime.
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VERTICAL TAIL BUFFET IN VORTEX BREAKDOWN FLOWS

Osama A. Kandil* and Mark W. Fianagan*

*Aerospace Engineering Department, Old Dominion University, Norfolk, Virginia 23529, USA

Computational simulation of vertical tail buffet has been accomplished using a simple generic model. The
model consists of a vortex-breakdown flow in a configured circular duct and a vertical flat plate which is placed

as a cantilever downstream of the vortex-breakdown flow. Vortex-breakdown flow is generated through a shock

wave at the duct inlet. The unsteady, compressible, full Navier-Stokes (NS) equations and the aeroelastic

equation for bending vibrations are solved sequentially to obtain the unsteady vortex-breakdown loads on the

plate and its aeroelastic deflections, respectively. The grid displacements are obtained using an interpolating

equation.

I. INTRODUCTION

The ability of modem fighter aircraft to fly and

maneuver at high angles of attack is of prime im-

portance. This capability is achieved, for example
in the F/A-18 Fighter, through the combination of

the leading-edge extension (LEX) for a delta wing
and the use of a single or twin vertical tail(s). How-

ever, at some flight conditions, the vortices emanating

from the highly-swept LEX breakdown before reach-

ing the vertical tails which get bathed in a wake of

highly unsteady, turbulent swirling flow. The vortex-
breakdown flow produces unsteady loads which in

turn produce severe buffeting of the vertical tails and
have led to their premature fatigue failure. Exper-
imental research work has been conducted on dif-

ferent models of the F/A-18 to understand the flow

physics, measure the tails' response [1-4] and alle-
viate the buffet phenomenon [5]. Cole, Moss and

Doggett [6] have found that the buffet response of a
I/6 size model of the F-18 airplane occurs in the first

bending mode.

The crucial point in predicting the buffet charac-

teristics is the knowledge of the driving unsteady air
loads associated with the vortex breakdown flow. Ed-

wards [7] presented a good assessment of the compu-

tational cost of this problem for a full fighter aircraft.

The principal author of this paper has proposed two

simple models to simulate and study the vertical-tail
buffet problem at a substantially reduced computa-

tional cost in comparison with the cost of solving for
the flow around a full fighter aircraft. The basic con-

cept behind these models is to be able to generate

an unsteady, vortex-breakdown flow and to place a

vertical tail, which is cantilevered, downstream of the
vortex-breakdown flow. In this way, the buffet prob-

lem is isolated from the whole configuration and the

computational resources are focused on a small region

for high resolution. The first proposed model con-

sists of a configured duct in which the inlet swirling
flow is forced to breakdown either through a shock

wave [8] (for transonic and supersonic inlet flows)

or through a gradual adverse pressure gradient that is

generated by the duct wall (for subsonic inlet swirling

flows). Downstream of the breakdown flow, a verti-
cal cantilevered tail is placed. In the second model,

the configuration consists of a delta wing at a criti-

cal angle of attack which produces breakdown of the

leading-edge vortex cores. Downstream of the break-
down flow, a vertical single or twin-tail configuration,

which is fixed as a cantilever, is placed.

Computational simulation using the second
model has been presented in Ref. [9] by Kandil,

Kandil and Massey. In the present paper, the first
model is used for the computational simulation of ver-

tical tail buffet. The model consists of a configured

circular duct with supersonic swirling flow which is

forced to breakdown through a shock wave at the

inlet. Downstream of the vortex-breakdown flow a

plate is placed as a cantilever which is fixed at the
duct wall. The initial flow conditions are obtained by

solving the unsteady, compressible, full NS equations

accurately in time while the plate is assumed to be

rigid. Next, the NS equations are sequentially solved
with the aeroelastic equation of bending vibrations

for the plate deflection. The grid is displaced using

an interpolation equation.



2. FORMULATION AND

COMPUTATIONAL SCHEME

The present multidisciplinary problem is solved

using three sets of equations which consist of the

unsteady, Compressible, full NS equations: the aeroe-

iastic equation for bending vibrations of a cantilever
beam, which approximates the plate bending vibra-

tions, and an interpolation equation to move the grid

due to the plate deflection. The NS equations are

given in gel. [9] and are solved using an implicit,

upwind, flux-difference splitting (Roe scheme), finite-
volume scheme. The aeroelastic equation for the

bending vibrations is given by

E "04w 02w = N(r,O (1)

where r is the radial distance from the fixed sup-

port along the beam length It, E the modulus of
elasticity, I the area moment of inertia, rn the mass

per unit length and N is the net surface pressure

force per unit length. The dimensionless form of

u,. r, E, I and m are given by

W" r" E*

u'=--, r=-- E- • .2,
r_ r"a ' pooaoo

1 d'_b" m"
I-

.4 i m- . .,2
12 r a poora

(2)

where r) is the duct inlet radius, p_ the freestream
air der_sity, a_o the freestream speed of sound, d" the

plate thickness, b" the plate width and the "*" denotes

dimensional quantities. The geometrical and natural

boundary conditions are given by

_I/2 . t_ 2 W

u,(o, t ) = -87( o, t ) = -bT. (t,, t) =

The solution to Eq. (I) is given by

=0

(3)

w(r,t)=_-_O#(r)q#(t)

;=l

(4)

substituting Eq. (4) into Eq.(l) and using the

Galerkin method, the equation for the generalized co-

ordinates, q#(t), is obtained. The solution for qj(t)
is obtained either by using a convolution integral or

by using a four-stage Runge-Kutta scheme. For the

present problem, six natural modes of vibration, ¢j,

are used. More details of the solution are given in

gef. [9].

For the grid displacements, the following inter-

polation equation is used for the x-coordinate which
is measured from the plate surface

x?'+' = z" w"+' (X_"or,,, ,J+ ,a cos (5)
I

where X, or _ is the maximum z coordinate (mea-

sured from the plate surface) of a grid point at the

right (r) or left (1) boundary of the computational

domain. With Eq. (5), a point on the plate is dis-
placed by the total plate deflection and a point at

either boundary is not displaced.

3. COMPUTATIONAL RESULTS

A configured, circular duct which is similar to

the one used by the senior author in gel. [8] is em-

ployed for the present problem. The duct length here
is 3.9 dimensionless units. It is configured such that

a supersonic inlet flow produces a shock at the in-

let section which is strong enough to break down the

inlet swirling flow. A half of the duct axial plane

is shown in Fig. 1. As a cantilevered plate at the

duct wall of length l, = 0.4 is placed at the axial
station x = 2.0, multi-block grids are used. There

are three blocks of grids; the first is to the left of

the plate (0 <__x <_ 2.0, r > 0.6) which consists

of 182x48 grid points in the axial and radial direc-

tions, respectively; the second is to the right of the

plate (2.0 _< z _< 3.9, r >_ 0.6) which consists of
120x48 grid points in the axial and radial directions,

respectively; the third extends from the center line to

the level of plate tip (0 < r < 0.6, 0 < z _< 3.9)

which consists of 302x64 grid points in the axial and

radial directions, respectively. The minimum radial

grid size at the center line is Attain = 3.,5 X 10 -3

and the minimum axial grid size at the plate surface

is Axmi, = 3 x 10 -4. Figure I shows the grid used.

The problem is solved for a quasi-axisymmetric

flow by forcing the components of the flowfield vec-

tor to be equal on two meridian planes in close prox-

imity of each other. The inlet flow Mach number is
!.75 and the Reynolds number is l0 s (based on the

duct inlet radius). The inlet profile for the tangential

velocity is given by

( :)]w : k_[l_ -r-_Uoo r L exp (6)



where Uoo = 1.74, rm = 0.2 and k_ = 0.1. The

maximum '_U'-L'_,swirling ratio 8, is at r = 0.224
and its value is kept at 0.32. The radial velocity,

v, at the inlet is set equal to zero and the radial

momentum equation is integrated to obtain the inlet

pressure profile. Finally, the density p is obtained
from the definition of the speed of sound for the

inlet flow. With this compatible set of profiles, the

computations are carried out accurately in time with

At - 0.001 and without inserting the plate until t = 9

dimensionless time units.

The boundary conditions for this step consists
of the inflow Riemann-invariant conditions, solid

boundary conditions at the duct wall, symmetry con-
ditions at the centerline and extrapolating the flow

variables at the duct exit boundary. Figure 2 shows

two snapshots of the streamlines and Math contours
at t = 3 and t = 8. it is noticed that an oscillating

shock developed at the duct inlet (see Mach contours)

and the unsteady vortex-breakdown bubbles devel-

oped behind the shock. The present solution is the
same as that obtained earlier with one block of grid.

3.1 initial Conditions

For t > 9, a flat plate is impulsively inserted at
_. = 2.0 and is cantilevered at the duct wall. The

computations are carried out accurately in time with

At = 0.001 and with the plate being considered as

a rigid boundary. Solid boundary conditions are en-
forced on the plate surfaces. Figure 3 shows snap-
shots of the streamlines and the Mach contours at

t = 10, 11, 17, 23, 29 and 32. The streamlines

show the continuous evolution, convection, merg-

ing and shedding of vortex-breakdown bubbles be-
hind the oscillating inlet shock. They also show an

unsteady, separated vortical region behind the plate.
The Mach--contours figures show the oscillating shock

at the inlet and unsteady shocks between the plate tip

and the duct wall. Having produced a strong vortex-
breakdown flow ahead and behind the plate, this so-

lution serves as initial conditions for the next step.

The next step is to couple the computational fluid

dynamics with the aeroelastic equation for bending

vibrations of the plate along with Eq. (5) for the grid

displacements.

3.2 Vortex-Breakdown Flow and Plate Deflection

For t > 34, the plate is allowed to deflect in

bending by solving Eq. (1) with the force per unit

length, N(r, t), obtained from the net surface pres-

sure on the plate. Since the plate is oscillating, the

kinematical boundary conditions are based on the rel-

ative velocity of the fluid with respect to the plate.

The dynamical boundary condition _ on the plate

is no longer equal to zero. The pressure gradient is

modified to o°-_n= -pap - h, where ap is the plate
02w

acceleration which is equal to _ lpl,t, and h is the

unit normal to the plate. The computations are carried

out accurately in time with At = 0.0001. The plate
dimensions are It = 0.4, d = 0.02 and b = 0.157.

Its modulus of elasticity and its mass per unit length
are E = 0.499 x 10a and rn = 7.177, respectively.

Figure 4 shows snapshots of the streamlines and

Mach contours during one cycle of periodic response

of the plate. The snapshots are marked by the num-
bers 1, 2, 3 and 4 which correspond to the instants i,

2, 3 and 4 shown on Fig. 5. Figure 5 shows the force

distribution on the plate, N, at different time levels

(from t = 35 to t = 35.5). It also shows the plate
deflections at its midpoint and its tip. It is noticed

that the period of oscillation is 0.3 time units which

corresponds to a frequency of 20.94. The maximum

tip deflection of the plate is 2.5 x 10 -4, which is of the
same order as that of the axial minimum spacing of

the grid at the plate surface.

4. CONCLUDING REMARKS

A simple generic model is introduced to sim-

ulate the vertical tail buffet problem due to vortex-
breakdown flows. The model consists of a config-

ured circular duct which produces unsteady vortex-

breakdown flow for the inlet supersonic swirling flow

due to an oscillating shock. Downstream of the

vortex-breakdown flow, a plate is placed as a can-
tilever at the duct wall. The problem is solved us-

ing three sets of equations which include the NS

equations, the aeroelastic equation for bending vi-
brations and an equation for the grid displacements.

The equations are solved sequentially using time ac-

curate stepping to obtain the force distribution on

the plate, the plate deflections and the grid displace-

ments, respectively. It has been shown that the plate

reaches periodic response in bending in a short time.

The present work represents a proof of concept for

a generic model to simulate vertical tail buffet. The
next step is to consider the three-dimensional flow



problem with the plate surface placed along the ax-
ial flow direction where both bending and torsional

modes can be considered.
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ABSTRACT

Computational simulation of the vertical tail buf-

fet problem is accomplished using a delta wing-
vertical tail configuration. Flow conditions are se-

lected such that the wing primary-vortex cores expe-

rience vortex breakdown and the resulting flow in-
teracts with the vertical tail. This multidisciplinary

problem is solved successively using three sets of

equations for the fluid flow, aeroelastic deflections

and grid displacements. For the fluid dynamics part,

the unsteady, compressible, full Navier-Stokes equa-
tions are solved accurately in time using an im-

plicit, upwind, flux-difference splitting, finite-volume
scheme. For the aeroelastic part, the aeroelastic equa-

tion for bending vibrations is solved accurately in

time using the Galerkin method and a convolution

integral solution. The grid for the fluid dynamics

computations is updated every few time steps using

an interpolation equation. The computational appli-

cations include a delta wing of aspect ratio 1 and two
cases for the vertical tail. The first case is for a tail

of aspect ratio of 2 located 0.5 chord length from the

wing trailing edge. The second case is for a tail of

aspect ratio of l located at the wing trailing edge.

INTRODUCTION

Recently, the design of modem fighter aircraft has
been focused on high angle of attack maneuverabil-

ity at high loading conditions, renewing the interest

in the tail buffet problem. For these fighters, the abil-

ity to fly and maneuver at high angles of attack is of

prime importance. This capability is achieved, for ex-
ample in the F/A-I 8 fighter, through the combination

of a leading-edge extension (LEX) and a delta wing
and the use of vertical tails. The LEX maintains lift at

high angles of attack by generating a pair of vortices
that trail aft over the top of the aircraft. The vortex
entrains air over the vertical tails tomaintain stability
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of the aircraft. This combination of LEX and verti-

cal tails leads to the aircraft excellent high angle of

attack performance. However, at some flight condi-

tions, the vortices emananting from the highly-swept

LEX of the delta wing breakdown before reaching the

vertical tails which get bathed in a wake of highly-

turbulent, swirling flow. The vortex-breakdown flow

produces severe buffet on the vertical tails and has
led to their premature fatigue failure. Buffeting of

the vertical tails of the F/A-18 fits into this category.

During flight operations of this airplane large vibra-
tions of the vertical tails have been observed.

Sellers et al. 1 conducted some three-component

velocity surveys for a YF-17 model (a configura-
tion similar to the F-IS) at low speeds. Their re-

suits clearly show that at 25° angle of attack the

vortex produced by the LEX experiences breakdown
and that there are large fluctuations in the velocity in

the vicinity of the vertical tails. They measured rrns

fluctuations as high as 40% of the freestream stream

velocity. Erickson, et al. 2 presented a wind tunnel

investigation of the F/A-18 aircraft. The investiga-
tion focused mainly on the measurements of steady

forces and pressures on the LEX and laser light sheet
measurements of the vortex structure. Some water

tunnel studies conducted by Wentz 3 using an F-18

model also showed that the vortex produced by the

LEX of the wing breaks down ahead of the vertical

tails at angles of attack of 25 ° and higher. If these
flows contain substantial energy at frequencies corre-

sponding to the lower modes of vibration of the tail

structure, significant structural response can result.

Another wind tunnel investigation of buffeting is

published by Lee and Brown 4. The buffeting of the

vertical fin of a rigid 6% model of the F/A-18 has

been investigated. Unsteady pressure measurements
on the vertical fin were conducted and the vortex flow

structure behind the fin was studied. The study was

carried out with LEX fences on and off to conclude

that the LEX fence has a small influence on the

steady balance measurements such as lift and pitching

moment.



Rao,PuramandShah-_proposed two aerodynamic

concepts for alleviating high-alpha rail buffet charac-
teristics of LEX vortex dominated twin tail fighter

configurations. These concepts were explored in low

speed tunnel tests on generic models via flow visu-

alizations, 6-component balance measurements and

monitoring of tail dynamics. Passive dorsal-fin exten-

sions of the vertical mils, and an active LEX arrange-

ment with up-deflected edge sections were evaluated

as independent means of re-structuring the adverse
vortical flow environment in the rail region. Each

of these techniques successfully reduced the buffet.

Used in combination, the two concepts indicated sig-

nificant tail buffet relief with relatively minor impact

on the high a configuration aerodynamics.

Cole, Moss and Doggett 6 tested a rigid, 1/6 size,

full-span model of an F-18 airplane that was fit-
ted with flexible vertical tails of two different stiff-

ness. Vertical-tail buffet response results were oh-

mined over the range of angles of attack from -10 °
to +40 °, and over the range of Mach numbers from
0.3 to 0.95. Their results indicated that the buffet

response occurs in the first bending mode, increases

with increasing dynamic pressure and is larger at M

= 0.3 than that at a higher Mach number.

So far, there are no available theoretical or corn-

pure tional methods to predict and control the aeroe-
lastic buffet characteristics of vertical tails. The cru-

cial point in predicting the buffet characteristics is
the knowledge of the driving unsteady airloads asso-

ciated with flow separations and vortex breakdown.

Edwards 7 presented a good assessment of the compu-

tational cost of this problem for a full fighter aircraft.

The principal author of this paper has proposed two

simple models to simulate and study the vertical-tail

buffet problem at a subst ntiaily reduced comput -

tional cost in comparison with the cost of solving for
the flow around a full fighter aircraft. The basic con-

cept behind these models is to be able to generate

an unsteady, vortex-breakdown flow and to place a

cantilevered vertical til, downstream of the vortex-

breakdown flow. In this way, the buffet problem is

isolated from the whole configuration and the com-

putational resources are-focused-on asmall region for

high resolution. The first proposed model consists of

a configured duct in which the inlet swirling flow is
forced to breakdown either through a shock wave s

(for transonic and supersonic inlet flows) or through

a gradual adverse pressure gradient that is generated

by the duct wall (for subsonic inlet swirling flows).

Downstream of the breakdown flow, a.vertical can-

tilevered tail is placed. In the second model, the con-

figuration consists of a delta wing at a critical angle

of attack which produces breakdown of the leading-

edge vortex cores 9. Downstream of the breakdown

flow, a vertical single or twin-t il configuration which

is fixed as a cantilever is placed.

In the present paper, the second model is con-

sidered for the compum tional simulation. The model

consists of a delta wing of aspect ratio 1 and two cases

of a single vertical rail. In the first case, the rail is of

aspect ratio 2 and is placed at 0.5 root-chord length

from the wing trailing edge. In the second case, the

tail is of aspect ratio 1 and is placed at the wing trail-

ing edge. The tail is cantilevered at the lower side and

the configuration is pitched at a 35 ° angle of attack.
The flow Mach number and Reynolds number are 0.4

and 10,000, respectively. The problem is solved se-

quentially using the time-accurate integration of the

laminar, unsteady, compressible Navier-Stokes equa-

tions, the aeroelastic equation for a beam in a bending

mode and an equation to update the locations of grid

points.

FORMULATION

The formulation of the problem consists of three

sets of goveming equations along with certain ini-

tial and boundary conditions. The first set is the

laminar, unsteady, compressible, full Navier-Stokes

equations. The second set consists of the aeroelas-

tic equations for the vibration modes which could be

coupled bending and torsion modes. In the present

paper, only the bending vibration is considered with-
out structural damping or nonlinearities, which could

be added in the future without any difficulty. The

third set consists of an equation for calculating the

grid displacements due to the tail deflections. The
literature shows various methods for computing the

grid displacements. The simplest methods use sim-

ple interpolation functions such that the grid points
adjacent to the aeroelastic surface move with the sur-
face while the grid points at the comput tional-region
boundary do not move 10'11. In the more advanced

methods for moving the grid, the grid is simulated
as a static 12-14 or dynamic truss. The unsteady,

linearizcd, Navier-displacement equations have also
been used successfully by Kandil et al. to move the

grid dynamically 15'16. In the present paper, we use
simple grid interpolation to move the grid. Next, the
governing equations for each set are given:
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Fluid Flow:

The conservative form of the dimensionless,

unsteady, compressible, full NS equations in
terms of time-dependent, body-conformed coordi-

nates _1,_2 and _3 is given by

O---t+ 0£m O_s = O;ra = l-3, s = 1-3 (I)

where

_m = _m(Zl,X2,x3,t) (2)

0 7 = 7 b°'pu''pu2'pu3'pe]' (3)

E,rn = inviscid fluz

= _ [ . o_n .1'10kCmEk + "--ff[-q]J

= jLoUm,pulUm + Ol_rnp, pu2Um

+ 02_mp, pu3Um + 03_mp,(pe + p)Um

o(rn p]t
Ot

(4)

( E,_,)_ = viscous and heat-conduction flux in (s
direction

1[0, OkC rkl, OkCrk2, OkCrk3,

Ol._S(u,,r_,,-qk)]t; k= 1-3, n= 1-3 (5)

Urn = Ok_mut - + 0----7- (6)

The first element of the three momentum elements of

Eq. (5) is given by

s n Oul ]

+ o-0-| (7)
.I

The second and third elements of the momentum

elements are obtained by replacing the subscript 1,

everywhere in Eq. (7), with 2 and 3, respectively.
The last element of Eq. (5) is given by

M°°# [ ( Oic_sop_"0_._s (uprt.p - qk) -- Re

_ 2 0p_S Ok,n ) OUkup0("

s n OUp

+ Ok( Ok( up-_-(_

_l)prOk(sl u; j ;p = 1 - 3 (8)+

The reference parameters for the dimensionless form

of the equations are c*, aoo, c*/aoe, p_ and #.x for

the length, velocity, time, density and molecular vis-

cosity, respectively. The Reynolds number is defined

as Re = p_cVocc*/#.x., where c* is root-chord length

of the wing. The pressure, p, is related to the total

energy per unit mass and density by the gas equation

[l(u21+u_+u_) ] (9)P-(7-1)O e-

The viscosity is calculated from the Sutherland law

T3/2(1+C'_ C = 0.4317 (10)
_= \T+c]'

and the Prandtl number Pr = 0.72. In Eqs. (1)-(8),
the indicial notation is used for convenience.

Aeroelastic Deflections:

In the present paper, the vertical rectangular tail

is treated as a homogeneous, uniform, cantilevered

beam with rectangular section. For bending vibration,
the dimensionless equation for the deflection w(z,t)

is given by

04w 02w = N(z,t) (11)
EZ-gT  + m-gir

where z is the vetaical distance from the fixed sup-

port along the beam length, It, E the modulus of
elasticity, I the area moment of inertia, rn the mass

per unit length and N is the net surface pressure
force per unit length. The dimensionless form of

w, z, E, I, m and N are given by

w* z* E*
w= _ z= _ E- ,,. ,,.2,

1 d*ab * rn* N*
,m- ,N- • .2 . (12)

I- 12 c .4 p_c .2 pooaooc

where c* is the wing root-chord length, p_ the

freestream air density, a_: the freestream speed of

sound, d* the tail thickness, b* the tail chord length,

N* the net surface pressure force per unit length and

the "'*" denotes dimensional quantities. The geomet-

rical and natural boundary conditions are given by

Ow 02 u' c_ w .

w( o, t ) = --ff_z(O,t ) = -_T( lt , t ) = -ff_z.a(lt , t) = 0
(13)

Tlae solution to Eq. (11) is given by

ll

w(z,t) = Z Cj(z)qj(t)
j=l

(14)



where _j(z) are comparison functions which satisfy
the boundary conditions, and they are given by the
natural modes of vibration

sin/_jz - sinh _z cosh/3jz - cos Bjz

Cj(z) = sin 13jl_ + sinh _rlt + cosh ,Silt + cos Bjlt
(15)

and _j are the eigenvalues obtained from the solution
of cosBh cosh/_lt = - 1. Substituting Eq. (14) into

Eq. (11) and using the Galerkin method, the follow-

ing equation is obtained for the generalized coordi-

nates qj(t):

n 11

j=l j=l

;r= 1,2,... ,n

mrj = elements of mass matriz

where

(16)

fo I'= m _rqbjdz (17.a)

k,.j = elements of stiffness matriz

_ooI' d2dprd2_j d z= E1 dz 2 _ (17.b)

fo"Nr = generalized force = N_rdz (17.c)

Since m, 1 and E are constants and 0r are orthogo-

nal, the mass and stiffness matrices are diagonal and

the set given by Eq. (16) is decoupled. Hence, the

solution to the present simple case reduces to the so-

lution of a decoupled set of second-order, ordinary-

differential equations, where each equation corre-

sponds to one of the natural modes. The solution
is obtained either by using a closed-form convolution

integral or by using a four-stage Runge-Kutta scheme.

For the jth mode shape, Eq. (16) becomes

krr
_j + _ (no summation over r)

mrr q_ - mrr (17)

The convolution integral solution for this equation is

given by

qj(t) - Arr(_) sin wr(t - _)d_
_rmrr

+qj(O)cos_rt + qj(O) sin_rt (18)
O./r

where _.,_ _ _ """= m, = ,, ,qjto) is the initial displace-
ment and qj(0) is the initial velocity.

If m, I and E are functions ofz, then Eq. (16)

will be a coupled set and one needs to use a normal-

mode shape transformation from q(t) to r/(t) to de-

couple the resulting set. For a coupled bending and

torsion vibration, the present procedure can be gen-
eralized to obtain the solution. For the aeroelastic

equations in the latter case, the solution is obtained

using the four-stage Runge-Kutta scheme.

Grid Displacements:

In the present paper, we use simple interpolation

functions to displacethe grid due to the tail deflection.
For bending vibrations, the tail deflection at any point

on its surface, wij,k, is in the spanwise direction Ol
coordinate). The spanwise coordinate of a grid point

n+l
_/i,j,/_ at the time level n + 1 is computed from the
equation

n+] n .n+l (Y_,j,k 7r_ (19)

_li,j, k = Zli,j, k + wi,j, k cos \Yi'Jdim/4'k 2]

where lq.Jaim/4,_ is the maximum y coordinate of
a grid point at the boundary of the computational
domain with an index of ddim/4. Thus, the tail

wn+ldisplacement i.j k is distributed through a cosine
function among t_e y coordinates of the grid. Thus,

a point on the tail is displaced by the total deflection

and a point at the boundary is not displaced.

Boundary and Initial Conditions:

Boundary conditions consist of conditions for the
fluid flow and conditions for the aeroelastic deflection

of the tail. For the fluid flow, the Riemann-invariant

boundary conditions are enforced at the inflow and
outflow boundaries of the computational domain. At

the plane of geometric symmetry, a periodic boundary

condition is specified with the exception of grid points

on the tail. On the wing surfaces, the no-slip and

no-penetration conditions are enforced and _n = 0.

On the tail surfaces, the no-slip and no-penetration

conditions for the relative velocity components are

enforced (points on the tail surface are moving). The

normal pressure gradient is no longer equal to zero

since points on the tail surface are accelerating. This

condition becomes _,, = --Poohl • h, where at is the

acceleration of a point on the tail, which is equal

to _tz,,). For the boundary conditions of the
aeroelastic deflection of the tail, they are given by

Eq. (13).

Initial conditions consist of conditions for the fluid

flow and conditions for the aeroelastic deflection of

4



the tail. For the fluid flow, the initial conditions
correspondto thefreestreamconditionswith Ul =

u2 = u,a = 0 on the wing and tail. For the aeroelastic
deflection of the tail, the initial conditions for any

point on the tail is that the displacement and velocity

are zeros, w(z,o) = _(z,o) = 0

METHOD OF SOLUTION

The first step is to solve for the fluid-flow prob-

lem using the vortex-breakdown conditions and keep-

ing the tail as a rigid beam. Equations (1)-(10) are
solved time-accurately using the implicit, upwind,

flux-difference splitting finite-volume scheme. The

grid speed _ is set equal to zero in this step. This

step provides the flow field solution along with the

pressure difference across the tail. The pressure dif-
ference is used to generate the force per unit length of

the tail, N. Next, Eqs. (14) and (18) are used to ob-

tain the tail deflections, wi,j,k. Equation (19) is used

to compute the grid coordinates. The metric coeffi-
cients of the coordinate Jacobian matrix are updated

as well as the grid speed, -_. Next, the compu-

tational cycle is repeated using Eqs. (1)-(10) for the

pressure difference across the tail, Eqs. (14) and (18)
for the tail deflections and Eq. (19) for the grid co-

ordinates, it should be noted that the time step for

the fluid-flow problem, At I, is an order of magnitude
less than the time step for the aeroelastic deflection,

At,i. Moreover, the maximum tail deflection u, for

each Ata is very small. Hence, one does not need

to compute _, for each time step, Atf. For example,

if Atd= 10 At I, the computation of the aeroelas-
tic deflections and grid coordinates can be performed

every 10 Atf.

COMPUTATIONAL APPLICATIONS

CASE I:

The delta wing-vertical tail configuration consists

of a sharp-edged, delta wing of aspect ratio 1 and

a rectangular, vertical tail of aspect ratio 2, which

is placed in the plane of geometric symmetry. The
vertical-tail leading edgeis_located.at 0.5 tool-chord

length from the wing trailing edge. The lower edge

of the tail is along the wing axis and the tail is

clamped at that edge. The wing angle of attack is
35 ° and the freestream Mach number and Reynolds

number are 0.4 and 10,000, respectively. An O-H

grid of 125x85x84 grid points in the wrap-around,

normal and axial directions, respectively, is used for

the solution of the fluid-flow part of the problem.

The solution and analysis of this problem have

progressed through rigorous steps in order to prove
the capability of the present model for simulating the

present multidisciplinaD' problem:

Step 1. Fluid Flow Around the Configuration

(Initial Conditions):

The laminar, unsteady, compressible, full Navier-

Stokes equations have been integrated time accurately

using the implicit, upwind, flux-difference splitting,
finite-volume scheme with At = 0.003. During this

step, the tail is kept rigid. The results of this step are
used as initial conditions for the second step. Fig-

ure 1 shows the spanwise, surface-pressure coefficient

(Cp) on the wing at different chord stations at it =
12,400 (37.2 dimensionless time). At z = 0.421, the

Cp-curve shows asymmetry with the pressure on the
left side having less suction than the pressure on the

right side (looking in the upstream direction). This
indicates that the left-vortex-core size is enlarging. In

Fig. 4, it is noticed that at this location a spiral saddle

point is formed and a spiral vortex-breakdown mode

is developing downstream of that point. Returning

back to Fig. 1, it is noticed that the asymmetry ex-

ists in all the cross-flow planes downstream of z =
0.421. At z = 0.814, a rapid decrease in the suction

pressure on the left side is observed and Fig. 4 shows

several spiral saddle points at that location. At z =

0.944, a rapid decrease in the suction pressure on the

right side is observed and spiral vortex breakdown

develops in the right vortex core (see Fig. 4). Figure
2 shows the total-pressure-loss contours and instan-
taneous streamlines for the left and right sides at dif-

ferent chord stations. The asymmetry is very clear at

x = 0.65 and 1.0. At a- = 1.0 and on the right side, it

is noticed that a repelling spiral saddle point exists,
which indicates the existence of vortex breakdown.

Figure 3 shows the instantaneous streamlines in

cross-flow planes at two chord stations z = 1.375 and
z = 2.019. The vertical-tail leading edge is located

at z = 1.5 and its trailing edge is at x = 2.0. It is

clear that the vertical tail is subjected to asymmetric,

unsteady, surface-pressure loads due to the vortex-

breakdown flow. Figures 4 and 5 show a plan view

of the wing and a three-dimensional view of the

wing-tail configuration, respectively, along with the

spiral saddle points and the asymmetric spiral vortex-
breakdown modes of the leading-edge vortex cores.



Figure6 shows snapshots of the pressure contours

on the right (d = 1) and left (d = ddim) surfaces
of the vertical tail and the pressure-difference on it

at two time levels; it = 12,400 and it = 12,600. A

close inspection of these loads reveals that the tail

is subjected to both bending and torsional loads. In

the present paper, only the bending vibration is taken

into consideration (torsional vibrations are also under

consideration). Figure 7 shows the corresponding

lumped, aerodynamic force per unit length of the tail,

N(z), at two time levels, t = 37.2 and t = 37.8.
It is noticed that within this short time of change,

N(z) changes rapidly in magnitude and direction.
The results at it = 12,600 are used for the initial

conditions of the buffet problem (i.e. letting the tail

deflect and interact dynamically with the flow).

Step 2. Fluid Flow/Tail Deflections Interaction:

With the initial-flow conditions obtained in Step 1

at it = 12,600, the aerodynamic force per unit length

Nr(z, t) is provided discretely to the aeroelastic pro-

gram and the generalized forces Nr are computed

for six natural mode shapes. The deflections w are

computed using Eqs. (14) and (18). Next, Eq. (19)

is used to obtain the updated y-coordinates for the

grid, the metric coefficients of the Jacobian matrix,

the grid speed; and the velocity and acceleration of

the points on the tail for the modified boundary condi-
tions for the fluid-flow solution. Next, the fluid flow

part is solved and Nr(z,t) is obtained and the com-

putational cycle is repeated. The tail is treated as a
homogeneous, uniform, rectangular beam with rect-

angular cross section of thickness d = 0.01 and width
b = 0.5. The dimensionless modulus of elasticity is
E = 0.4903 x 102 and E1 = 0.0204 x 10-4 . The

dimensionless mass per unit length is m = 11.428.

Figure 8 shows the histories of tail deflection, w, and

net pressure force per unit length, N, versus the ver-

tical coordinate z every 500 time steps (every 1.5

dimensionless time). The deflection and net pressure
force versus time are also shown for the tail midpoint

(z = 0.5) and its free-end point z = 1.0. The time-

step counter n is for the interaction case only without

the time steps for initial conditions (it = !2,600). The

early time levels show very large N values with larger
values at z = 0.5 than at z = 1.0. The tail deflection

w shows a growing oscillatory response reaching a

maximum value for the tail free end at n = 3,700 (it

= 16,300). Then, the total deflection shows a damped

oscillatory response due to the aerodynamic damping

of the flow. The aerodynamic damping.is automati-

cally included in these results due to the method of
solution which considers the fluid flow, the tail aeroe-

lastic deflection and the grid deformation simultane-

ously. The solutions do not show periodic responses

until n = 6,500 (it = 19,100). It is also noticed that

all the tail deflections are positive.

Figure 9 shows cross-flow velocities and instan-

taneous streamlines along the D-ray plane on the

fight and left sides showing the asymmetric vortex-
breakdown flows of the leading-edge vortex cores at

n = 6,500 (it = 19,100). In Fig. 10, the instanta-

neous streamlines are shown in cross-flow planes be-

fore and through the vertical tail at chord stations of
z = 1.37, 1.51, 1.67, and 1.8. These sections show

the asymmetric vortex-breakdown bubbles adjacent to
the deflected tail. Figure 11 shows snapshots of the

surface pressure contours at two instants, n = 3,150

and 6,500 (it = 15,750 and 19,100) on the two sides

of the vertical tail; right side is at d = 1 and left side

is at d = ddim. This figure shows the asymmetric

unsteady pressure loads which affect the tail.

To show that the tail deflection and its dynamic

response affect the flowfield upstream of the tail loca-

tion, the surface-pressure-coefficient distributions at

several chord stations of the wing at it = 19,100 are

shown in Fig. 12. Comparing the Cp's of Fig. 1 (it

= 12,400) and those of Fig. 12, it is observed that

the Cp curves as of z = 0.421 are different. Since

the flowfieid is subsonic throughout, the disturbances

created by the tail deflection and dynamics propa-

gate upstream affecting the flowfield and the vortex-

breakdown critical points. Figure 13 shows deformed

grids in a cross-flow plane passing through the tail at
x = 1.75 at it = 15,750 and 19,100. The grid defor-

mations and the tail deflection are clearly noticed.

In Fig. 14, color graphics of a top view, tilted
front view and a three-dimensional view of the wing-

tail configuration are shown at it = 19,100. The top

view shows the locations of the spiral saddle points

on the right and left sides of the wing (their locations

are different from those of Fig. 4). The tilted front
view shows the trace of the deflected tail and the

total-pressure surfaces which show the breakdown of

the leading-edge vortex cores. The three-dimensional

view shows the whole configuration including the

total pressure surfaces, the spiral saddle points and

the surface-pressure contours (compare with those of

Fig. 5).



CASE2

With the same delta wing and same flow condi-

tions, the vertical tail aspect ratio is reduced to one

(b = 0.5, li = 0.5) and its location is changed to the

wing trailing edge from x = 1.5 to z = 1.0. The solu-

tion for the initial conditions is repeated for this new

configuration until it = 12,600. The fluid flow, tail

deflection and grid displacement interactions are car-

ried out for n = 4,500 (it = 17,100) with At = 0.003.

The material properties of the tail are kept fixed.

Figure 15 shows the histories of tail deflection and

net pressure force per unit length versus the vertical
coordinate z every 500 time steps (every 1.5 dimen-

sionless time). The deflection and net pressure force
versus time are also shown for the tail midpoint (z =

0.25) and its free-end point (z = 0.5). The tail deflec-

tion shows a growing oscillatory response reaching
a maximum value for the midpint at n = 1,200 (it

= 13,800). Then, the tail deflection shows a rapidly

damped oscillatory response due to the aerodynamic

damping of the flow. The tail deflections lead the

net pressure forces and the phase lead is more pro-
nounced at the free end of the tail. The solutions do

not show a periodic response until n = 4,500 (it =

17,100). However, the tail deflections show positive

and negative values. The tail deflections are also no-

ticed to change from the second bending-mode shape

to the first bending-mode shape.

Figure 16 shows cross-flow velocities and instan-
taneous streamlines along the D-ray plane on the

right and left sides showing the asymmetric vortex-
breakdown flows of the leading-edge vortex cores at

n = 4,500 (it = 17,100). In Fig. 17, the instantaneous
streamlines are shown in cross-flow planes passing

through the tail at z = 1.01, 1.18, 1.38 and 1.5. These
sections show the asymmetric vortex-breakdown bub-

bles adjacent to the tail surface and covering a larger

height of the tail than those of Fig. 10 (the tail height

here is one-half the tail height of Case 1).

In Fig. 18, color graphics of a top view, a tilted
fiont view and a three-dimensional view of the wing-

tail configuration are shown at it = 17,100. Compar-

ing these views with those-af Fig. 14,-it is observed

that the spiral saddle points of vortex breakdown, sur-

face pressure and total-pressure surfaces are different

from those of Fig. !4. A gain, this shows conclusively

that location, shape, deflections, and dynamics of the

tail substantially affect the flowfield upstream of the

tail, i.e.; on the wing. In Fig. 8, the tail deflection

is noticed in the top view and the three-dimensional

view as well.

CONCLUDING REMARKS

The buffet problem of a vertical tail due to the
interaction of vortex-breakdown flow with the tail

has been simulated computationally and efficiently

using a delta wing-vertical tail configuration. The

wing aspect ratio and flow conditions have been care-

fully selected in order to produce an unsteady vortex-
breakdown flow. The solution has demonstrated the

development of the tail buffet due to the unsteady

loads produced by the vortex-breakdown flow. The

problem is a multidisciplinary problem which re-

quires three sets of equations to obtain its solution.
The first set is the unsteady Navier-Stokes equation
which is used to obtain the aerodynamics force per

unit length on the tail. The second set is the aeroe-
lastic equation for bending vibrations which is used
to obtain the tail deflections, velocities and accelera-

tions. The third set is the grid displacement equation

which is used to update the grid coordinates due to
the tail deflections. The three sets of equations are

solved sequentially and accurately in time. The com-

putational applications included two cases of delta

wing-vertical tail configurations. Fixing the flow con-
ditions and the geometry of the delta wing, two tail

aspect ratios and locations are used. Initially, tail de-
flections and aerodynamic loads were higher for the

first case than the second case. Later on, the deflec-

tions were damped due to the aerodynamic damping
of the flow. The solutions show that the tail location,

shape, deflections and dynamics affect the flowfield

upstream of the tail. Work is underway to include tor-
sional modes to the bending modes, upgrade the tail

model from beam equations to plate equations, and

consider the wing-twin vertical tail configuration.
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SHOCK.VORTEX INTERACTION OVER A 6S-DEGREE DELTA WING IN TRANSONIC FLOW
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and
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ABSTRACT

Transonic flow over a 65-degree swept-back, sharp-

edged, cropped della wing is investigated compulationally

using the time-accuratesolutionof the unsteady,com-

pressible,full Navier-Stokes equations with an implicit,

upwind, flux-difference splitting, finite-volume scheme.
Coarse and fine O-H gridsare used to obtain the so-
lution. The grid consistsof 125x85x84 pointsin the

wrap-around,normal and axialdirections,respectively.

The resultsare presentedfor an angle of attackof 20°,

March number of0.85and Reynolds number of3.23x 106

(basedon thewing chord length).With thefinegrid,the

resultsshow thata system of shocks has been captured

ovcr the upper wing surface,and thatthe leading-edge

vortexcore experiencesan unsteady,supersonicvortex

brcakdown afterpassingthrougha spanwise shock (ter-

minating shock) near the wing trailingedge. The com-

putedresultsata certaintime areingood agreementwith

thccxpcrimcntaldata.Topologicalaspectsof thevortex-

breakdown flowficldarcalsopresentedand discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex break-
down for incompressible flows around delta wings has

been observed along the leading-edgeprimary vortex
cores.Two distinctforms ofvortexbreakdown have been

documented cxperimenlallyx.The firstform isthebubble

typc and thc second form isthe spiraltype. The bub-

blc typeshows an almostaxisymmctricsudden swelling
of thc vortexcore intoa bubble, while the spiraltype

shows an asymmetric,spiral,vortexfilamentfollowedby

a rapidlyspreadingturbulentflow.Both typesarccharac-

tcrizcdby an axialstagnationpointand a limitedregion

of rcvcrsedaxialflow. Much of our knowledge of in-

compressiblcvortexbreakdown has been obtainedfrom

cxpcrimcntalstudiesof pipe flows where both typesof

brcakdown and othertypes as well wcrc generatedand

documented2_.

Thc major effortof computational study of vor-
tex breakdown flows has alsobeen-focused on iso-

latedswirlingflows. For incompressibleflows,quasi-

axisymmctric,bubble-type,vortex-breakdownflowswere

• Pmfesux, Eminent Scholar and Chaimum of A_ospace

Engineering Depm'tme_ Associate Fellow AIAA.

" Research Associate, Aeroqutce Engineering Deparunen_ Member

AIAA.

"* Senior R_ Sciemi_, Computational Aerodymu_ics Branch,

Astociate Fellow AIAA.

computed using the Navier-Stokes equations 5"4. Three-
dimensional bubble and spiral vortex-breakdown flows

were also computed for isolated swirling flows using
the three-dimensionalNavier-Stokes equations in the

vordcity-velocity form or the primitive variables form 9-_1.

Interaction between a longitudinal vortex and a trans-

verse shock wave occurs in several flow applications
which include transonic and supersonic flows over a della

wing or a strake-wing configuration at moderate to high

angles of attack, a supersonic inlet ingesting a vortex,
and a supersonic combustor where fuel is injected in a
swirling jet to enhance fuel-air mixing 13-t4. For della

wings and strake-wing configurations, vortexbreakdown

is an undesirablephenomenon since itproduces wing

stall. Therefore,its occurrenceneeds tobc delayedwith

passive or active control methods in order m increase

the wing performance at large angles of attack. For

a supersonic combustor, vortex breakdown is desirable
since it enhances mixing of air and fuel and stabilizes the
flamex5,_6.Thereforeits occurrenceneeds to be enhanced

and controlled.

For su_nic flows, quasi-axisymmetric bubble-type
vortex-breakdown 17-19 and three-dimensional bubble-type

and spiral-type vortex breakdown 2° fef isolated swirling
flows have been recently computed by the present au-

thors. Using compatible,inlet boundary conditions,the
time-accuratesolutionsoftheunsteady,compressible,full

Navicr-Stokcsequationswere obtainedto study the ef-

fectsof Reynolds number, Mach number, swirl ratio,

type of exit-boundaryconditionsand grid finenessand
distributionon the vortex-breakdownmodes forinternal

and externalflows.Severalmodes of vortexbreakdown

which includetransientsingle-bubble,transientmulti-

bubble, periodic multi-frequencymulti-bubble,quasi-

steady two-bubble cell and spiral-typevortex break-
downs have been obtained21. For three-dimensional

vortex-breakdown flows in a swirling,supersonicjet

flow, topologicalaspectsof the critical points in the

vortex-breakdownregion have been studiedand com-

pared with the availableexperimentalincompressible

vortex-breakdowntopology.

Recent experimentalmeasurements22-26of transonic

Cop_ight © 1993 by Omm_ Kmxlil. Publi,hed by The American
Inmtme of Aeronautics and Astronautics, Inc. with permission.



flows ammad a 650 mvept-l_:k, crt_ed delta wing _ow
that shock wave formation is likely to occur underneath
the leading-edge primary vortex core. In cress-flow
planes perpendicular to the wing, the cross-flow beneath
the primary vortex reaches supersonic speeds and a eruss-
flow shock develops beneath the primary vta_.x similar
to the supersonic flow in a convergent-divergent nozzle.
These measurements also show that a transverse shock

"terminating shock" which might cause primary-vort_-
core breakdown could develop in an analogous manner
to the shock that terminates the two-dimensionalsuper-
sonic pocket on an airfoil. A complete reconstruction
of the three-dimensional flow field on the delta wing in
this region was not possfole experimentally a_-26. Com-
putational simulations for transonic delta-wing flows have
been developed by using the Euler equation_. _ and
the thin-layer, Navier-Stokes equation_. The Euler-
equations solutions were not capable of fully resolving
the flow in the terminating shock region and the thin-
layer, Navier-Stokes solution did not address that region.

In the present paper, we consider the transonic flow
around a 65° sharp-edged, cropped delta wing at an angle
of attack of 20°, a Mach number of 0.85 and a Reynolds
number of 3.23 × 106. The purpose of the present numer-
ical simulation and study is to construct the flow field
over the wing with particular emphasis of the vortex
core-terminating shock interaction region. The laminar,
unsteady, compressible, full Navier-Stokes equations are
solved accurately in time with an implicit, flux-difference
splitting, finite-volume scheme. The computations are
carried out with time-accurate stepping on two O-H grids;
a coarse grid and a fine grid. Both grids consist of
125x85x84 points in the wrap-around, normal and axial
directions, respectively. The main difference between the
coarse and fine grids is the distribution of the grid points
normal to the wing surface within the thin viscous layer
(to be discussed later on).

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-
nates _J ,_+-and _3 (Ref. 18).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into
two pans; left and fight flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to

eliminate oscillations at locations of large flow gradients.

The viscous- and heat-flux tmam are _ in time

and the ero_-d_ivative texas are neglected in the im-
plicit operator and retained in the explicit terms. The vis-
cous tea'msare differenced using a second-order accurate
central differencing. The resulting difference equation is

approximately factored and is solved in three sweeps in
the _l, _ and _ directions. The computational scheme
is coded in the computer program "FrNS3D" which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65* swept-back, _ged, cropped delta wing
with zero thickness is considered for the computational
solutions. The cropping ratio (tip length/root-chord
length) is 0.15. The wing angle of attack is 20° , and the
freestmam Math number and Reynolds number (based
on the root-chord length) are 0.85 and 3.23x 106, re-

spectively. The reason behind the present, selected flow
conditions is because of the uncertainty of the existing

experimental data22-26about the structure of the down-
stream flow field of the leading-edge vortex core. The

experimental dam shows that a supersonic flow region
appears on the upper wing surface near the plane of sym-
metry. This flow region is terminated by a transverse
shock (known as a terminating shock) in a similar way to
the shock that terminates a supersonic pocket on a super-
critical airfoil _.

Grid:

An O-H grid of 125x85x84 in the wrap-around,
normal and axial directions, respectivel_ is used for the
computational simulation. The computational domain
extends two-chord length forward and five-ebord length
backward from the wing trailing edge. The radius of the
computational domain is four-chord length. Two grids
have been constTucted using the same number of grid
points. The first is called the coarse grid and the second
is called the fine grid. For the coarse grid, the grid points
in the cross flow planes have been distributed using a
Joukowski transformation which produces a minimum

grid size, normal to the wing surface, that varies from
5x 10-4 at the leading edge to 3 x 10-2 at the plane of
symmetry. For the fine grid, the elliptical grid lines in
the cross-flow planes have been constructed such that the
minimum grid size normal to the wing surface, stays
constant at 5 x 10_ from the leading edge to the plane
of symmeuy. Figures 1 and 2 show three-dimensional
shapeof the coarseand fine grids and a cross-flow plane
along with its blow-ups.

Time-accurate integration of the laminar, unsteady,
compressible, full Navier-Stokes equations has been car-
ried out with At = 0.001 for the coarse grid and At =
0.0002 for the fine grid. The results showed that the
leading-edge vortex core passes through a terminating
shock which causes the vortex core to breakdown. More-
over, it is shown that the flow becomes unsteady behind
the terminating shock.



Validation of Surface Pressure:

Figure 3 shows a comparison of the computed, span-

wise surface-pressure coefficient (Ca,) at different chord
stations for the fine and coarse grids with the experimen-
tal data of Erickson s° (Re = 3.23 x 106) and Hartmann u

(I_ = 2.38x106 and 4.57x1_). The computed results
are selected at t = 3.6. Obviously, the coarse-grid C.p-

curves do not show the suction-pressure peak correspond-

ing to the secondary vortex and the correct location of the

suction-pressure peak corresponding to the primary vor-

tex. The coarse-grid Cp-curves axe similar to those of the
Euler-eqnations solution. Therefore, they are discarded
in this paper. The fine-grid Cp-corves show the correct
location of the suction-pressure peak corresponding to the

primary vortex and the suction-pressure peak correspond-

ing to the secondary vortex. The fine-grid Cp-curves at
x = 0.3, 0.6 and 0.8 are in fair to good agreement with

the experimental data. For x = 0.9, the fine-grid Cp-
curve shows a substantial, rapid increase in the pressure

coefficient (a d_ in the suction pressure). Figure
4 shows the total-Mach contours and the streamlines in

cross-flow planes at the chord stations of x = 0.3, 0.6, 0.8,
0.9, 0.97 and 1.0. At x = 0.3, 0.6 and 0.8, the total-Mach
contours show an oblique shock under the primary vortex

and a small subsonic region to the right of the shock. The
streamlines show the secondary separation to the right of

the shock. This separation is due to the shock interac-
tion with the surface boundary-layer flow and is also due

to the adverse, spanwise pressure gradient created by the

primary vortex. At x = 0.9, the shock under the primary
vortex becomes weak as observed in the total-Mach con-

tours and the primary-vortex size increases. At x = 0.97,
the shock under the primary vortex disappears and the

primary vortex diffuses and reduces to a repelling focus
as shown by the streamlines. At x = 1.0, the repelling
focus becomes a repelling line. The details of the flow
structure shown at x = 0.9, 0.97 and 1.0 indicate that

the primary vortex is going through a breakdown mode
which is caused by a transverse shock (terminating shock)
between x = 0.8 and x = 0.9.

Terminating Shock:

To show that a terminating, transverse shock exists

and has been captured computationally, the static-pressure
contours and total-Mach-contours on two planes are com-

puted and displayed in Fig. 5. In this figure, the static-

pressure contours are shown on the wing surface and
the plane of symmetry, and the total-Mach contours are
shown on the third plane (k = 3) above the wing (in the

viscous layer) and on the plane of symmetry. The plane
of symmetry contours clearly show the location, shape

and strength of the terminating shock. Moreover, the
Math contours show that a substantial supersonic pocket

(bounded by the sonic line and terminating shock) ex-
tends from the wing vertex to the shock location of x =

0.83, which is in good agreement with the experimental
data3°, where the shock is located at x = 0.84. The corn-

puted results show that the shock is a normal shock with
a height of 0.4 which is equal to one-half the wing span.

In the spanwise direction, the shock foot print (shown on
the Mach contours at k = 3) extends beyond the primary-

vortex location. A A-type shape of the shock-system foot

print, which on one side of the wing, consists of the ter-
minating shock and the shock under the primary vortex
that runs along a ray plane from the wing vertex, is seen
on the Mach contours at k = 3.

Figure 6 shows the position of the ray lines from the

wing vertex (which are marked by the leua.rs A-H) and

the static-pressure curves along these lines. The static-

pressure curves show the spanwise locations of several
points on the foot-print line of the terminating shock. The
terminating shock is clearly seen to run in the spanwise
direction from the plane of symmetry to the wing leading

edge. It reaches its highest strength from the location of

the primary vortex to the wing leading edge (from line

E to line H).

Vortex-Breakdown Structure:

Having established the shock system that consists of
the shock under the primary vortex and the terminating
shock, the focus is directed on the structure of the flow be-

hind the terminating shock. In Fig. 7, we show the total-
Mach contours and slreamlines on a ray plane at the 0.658

spanwise location, which passes through the leading-edge
vortex core. Blow-ups of the velocity vectors and sur,am-

lines on this vertical plane are also shown in Fig. 7. The

streamlines figures clearly show a two-bubble cell vortex
breakdown. This is a typical three-dimensional vortex-
breakdown mode which consists of an attracting saddle

point (fi'ont) a repelling saddle point (rear), an attracting
focus (top) and a repelling focus (bottom). Such a break-
down mode is similar to the one which was captured for

an isolated supersonic vortex in an unbounded domain
in Refs. 20 and 21. The location of the attracting sad-

dle point is at 0.97 along the ray line, which corresponds
to 0.87 along the axial direction. The attracting focus

point is characterized with spiralling-in streamlines and
the repelling focus point is characterized with spiralling-
out streamlines. The Mach contours show that the front

surface of the vortex-breakdown bubbles is enclosed by a

hemi-spherical shape-like shock surface. Figures 12 and
13 show details of the flow structure on the wing plan

view, on the plane of symmetry and on the ray plane at
the 0.658 spanwise location (marked as J = 16 on Fig. 13).

These figures and discussion give a complete construction
of the flow structure including the shock system and its
interaction with the leading-edge vortex core which pro-
duces vortex-breakdown of the two-bubble-cell mode.

Unsteadiness of the Vortex-Breakdown:

The computations have been carried out with time-

accurate stepping beyond t = 3.6. Figures 8-11 show the
results at t = 5.52. These results show that the terminating

shock moves in the upstream direction and so is the



two-bubble-tenvortex breakdown behind the terminating

shock. Figure 8 shows that the repelling focus is at x =
0.88 instead of x = 0.97 (Fig. 4). Figure 9 shows that

the terminating shock in the plane of symmetry is at x =

0.685 instead of x = 0.83 (Fig. 5). The shock decreases in

height and its thickness increases. Figure 10 shows that
the size of the two-bubble cell vortex-breakdown region

increases in comparison with the size at t = 3.6 (Fig. 7).

Upstream of the terminating shock the flow stayed steady
without any change.

Beyond the time t = 5.52, the upstream shock motion

stopped and the motion reversed its direction to the down-
stream. The computations were not carried out beyond

this instant due to its impeding cost. The unsteadiness of
the terminating shock and the vortex-breakdown region
behind it have also been observed experimentally by Ban-

nik and Houtmann 23. They also observed that the flow

upstream of the terminating shock stayed steady without
any change. These experimental observations undoubt-

edly support and validate our computational results.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting, finite-volume

scheme to study and construct the flow field structure of
a transonic flow around a 65 ° sharp-edged, cropped-delta

wing. A A-shock system, which consists of a ray shock

under the primary vortex core and a transverse terminat-
ing shock, has been captured. Behind the terminating
shock, the leading-edge vortex core breaks down into a

two-bubble cell type. The terminating shock and the vor-
tex breakdown region behind it is time dependent and

appears to be oscillatory. The flow field ahead of the ter-
minating shock stays steady without any change. This is
consistent with the fact that the supersonic pocket along

with the terminating shock do not allow disturbances to

propagate upstream. The present results have been vali-

dated using the available experimental data and they are
in good agreement. The present paper gives a complete
construction of the flow field over the wing surface and

in particular the structure of the flow at the terminating
shock and behind it.
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ABSTRACT

The effects of freestream Mach number and angle of

attack on the leading-edge vortex breakdown due to the

terminating shock on a 65-degree, sharp-edged, cropped

delta wing are investigated computationally. The compu-
tational investigation uses the time-accurate solution of

the laminar, unsteady, compressible, full Navier-Stokes

equations with the implicit, upwind, flux-difference split-

ring, finite-volume scheme. A fine O-H grid consisting of
125x85x84 points in the wrap-around, normal and axial
directions, respectively, is used for all the flow cases.

Keeping the Reynolds number fixed at 3.23× 106 , the
Mach number is varied from 0.85 to 0.9 and the angle

of attack is varied from 20 o to 24 °. The results show that

at 20 ° angle of attack, the increase of the Mach number
from 0.85 to 0.9 results in moving the location of the ter-

minating shock downstream. The results also show that
at 0.85 Mach number, the increase of the angle of at-

tack from 20 ° to 24 ° results in moving the location of

the terminating shock upstream. The results are in good

agreement with the experimental data.

INTRODUCTION

The literature shows that vortical flows around delta

wings in the low-speed regime have received a substantial
volume of experimental _-4 and computational 5-9 research

work. In the high angle of attack range, vortical flows in

the low-speed regime are characterized with three types

of boundary-layer separation, namely; primary, secondary

and tertiary separations. The primary separated flow rolls

up into a strong primary vortex core which produces a
strong suction-pressure peak on the wing surface. The

spanwise adverse-pressure gradient of the primary vortex
causes the spanwise, outboard-moving, boundary-layer

flow to separate forming a secondary vortex with opposite
sense of rotation to and smaller strength than that of the

primary vortex. The spanwise adverse-pressure gradient
of the secondary vortex causes the spanwise, inboard-

moving, boundary-layer flow to separate forming a ter-

tiary vortex with same sense of rotation as and substan-
tially small strength than that of the primary vortex. The

_anwise surface-pressure curves are characterized with
three suction-pressure peaks which varies in strength cor-
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responding to the locations of the primary, secondary and
tertiary vortices. When the angle of attack reaches a crit-
ical value, the axial-pres._tre gradient and the high swirl

ratio of the primary vortex produce a stagnation point

along the path line of the primary-vortex core, and vor-
tex breakdown of the primary core develops. Depending

on the swirl ratio, axial pressure gradient and Reynolds

number, the primary-core vortex-breakdown mode might

be a bubble type, a spiral type or a bubble-spiral type.

As the freestream Math number increases, the vortical
flow around the delta wing changes substantially due to

the compressibility effects. In the supersonic flow regime,

shock waves appear beneath or above the primary vor-

tex, depending on the freestream normal Mach number
and normal angle of attack. Experimental data m' H and

the computational results n-14 have shown these types of
vortical-flow structures. The foot print of these shock

waves runs along a ray line from the wing vertex. If

the shock wave is beneath the primary vortex, it interacts

with the spanwise, outboard-moving, boundary-layer flow
and causes, in addition to the adverse pressure gradient

produced by the primary vortex, secondary-flow separa-
tion. If the shock wave is above the primary vortex, it

flattens the primary vortex and the spanwise surface pres-

sure curve. Comparison of the surface pressure distribu-
tion over a delta wing in low-speed and supersonic-speed

regimes, shows that the suction-pressure peak correspond-

ing to the primary vortex is lower for the supersonic flow
than that for the low-speed flow.

In the Wan.sonic-flow regime, research work on vor-

tical flows around delta wings was given adequate at-

tention only recently. Understanding the steady and un-

steady, transonic, vortical-flow structures around delta
wings in the moderate-high angle of attack range is im-

portant for increasing the performance quality of the new

generation of supermaneuver aircraft (e.g. YF22). Recent
experimental measurements of transonic flows around a

65 ° cropped delta wing 15-21 show that a complex shock-
wave system appears over the upper wing surface. The

shock-wave system consists of a ray shock wave beneath

the leading-edge primary vortex and a transverse, time-

dependent 16, normal-shock wave (known as a terminat-
ing shock) which runs from the plane of symmetry to the

wing leading edge. The terminating shock wave interacts



with the primary-vortex core causing it to breakdown at
an angle of attack as low as 18". Such a critical angle
of attack is substantially smaller than the critical angle
of attack of vortex breakdown in the low-speed regime.
Reference 21 contains extensive flow measurements for

the 65e cropped delta wing with and without leading-
edge extension (LEX). A complete reconstruction of the
three-dimensional flow field at and behind the terminating

shock was not possible experimentally.

Computational simulations for Iransonic delta-wing
flows have been developed on a very limited scale by

using the Euler equations z°"22 and the thin-layer Navier-
Stokes equations 23. The Euler-equations solutions were
not capable of fully resolving the flow in the terminating
shock region and the thin-layer Navier-Stokes-equations
solutions did not address that region. In Ref. 24 by the

present authors, the laminar, unsteady, compressible, full
Navier-Stokes equations are integrated time accurately us-

ing the implicit, upwind, flux-difference splitting, finite-
volume scheme to study and construct the flow field
structure of a transonic flow around a 65 ° sharp-edged,

cropped-delta wing at 20 ° angle to attack, 0.85 Mach
number and 3.23×10 _ Reynolds number. A fine O-H
grid consisting of 125 ×85 x 84 points in the wrap-around,
normal and axial directions, respectively, is used for the

computational solution. A h-shock system, which con-
sists of a ray shock under the primary vortex core and
a transverse terminating shock, has been captured. Be-
hind the terminating shock, the leading-edge vortex core
breaks down into a two-bubble cell type. The terminat-

ing shock and the vortex breakdown region behind it are
time dependent and appear to be oscillatory. The flow
field ahead of the terminating shock is steady and in-
cludes a supersonic pocket which is surrounded by the

ray shock and the terminating shock. The flow inside
the pocket does not change due to changes in the flow
downstream. This is consistent with the fact that the su-

personic pocket along with the terminating shock do not
allow disturbances to propagate upstream. These results
have been validated using the available experimental data
and they are in good agreement. This work gives a com-
plete construction of the flow field over the wing surface
and in particular the structure of the flow at the terminat-
ing shock and behind it.

In this paper, a parametric study is carried out to in-
vestigate the effects of freestream Mach number and an-
glc of attack on the terminating shock and the leading-
edge, primary-vortex breakdown for the same 65° sharp-
edged, cropped delta wing. The computational investiga-
tion uses the same equations, computational scheme and
grid of Ref. 24. Keeping the Reynolds number fixed at
3.23 x 106, the Mach number is changed from 0.85 to 0.9
while the angle of attack is fixed at 20 °, and the angle
of attack is changed from 20 ° to 24 ° while the Mach
number is fixed at 0.85.

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-

nates _1,_ and _3 t_f. 25).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-

ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into

two parts; left and fight flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux iimiter is used to
eliminate oscillations at locations of large flow gradients.
The viscous- and heat-flux terms are Iinearized in time
and the cross-derivative terms are neglected in the im-

plicit operator and retained in the explicit terms. The vis-
cous terms axe differenced using a second-order accurate
central differencing. The resulting difference equation is

approximately factored and is solved in three sweeps in
the _1,_ and _s directions. The computational scheme
is coded in the computer program "ZI'NS3D" which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept-back, shaxp-edged, cropped delta wing
of zero thickness is considered for the computational so-

lutions. The cropping ratio (tip length/root-chord length)
is 0.15. An O-H grid of 125xg5x84 in the wrap-around,
normal and axial directions, respectively, is used. The

computational domain extends two-chord length forward
and five-chord length backward from the wing wailing

edge. The radius of the computational domain is four-
chord length. The minimum grid size normal to the wing
surface is 5x10 -4 from the leading edge to the plane of

symmetry. Figure I shows a three-dimensional shape of
the grid and a cross-flow plane.

Time-accurate integration of the laminar, unsteady,
compressible, fullNavier-Stokes equations has been car-
fled out with At - 0.0002. Three flow conditions are
used to study the effect of increasing the Mach number
while the angle of attack is kept constant and the effect
of increasing the angle of attack while the Mach num-
ber is kept constant. In all the three cases, the Reynolds
number. 1_, is 3.23×106 based on the root-chord length.

Case I (Moo = 0.85, a = 20°)

For this case, the freestream Mach number, Moo, and

angle of attack, or,are 0.85 and 20o, respectively. Figure 2
shows a comparison of the computed, spanwise, surface-

pressure coefficient (Cp) at different chord stations (x =

2



0.3, 0.6 and 0.8) with the experimental data of Erickson 21

(Pc = 3.23x10 s) and Hartmann I_ (Pc = 2.38x106 and

4.57 x 106). The computational results show the correct
location and level of the suction-pressure peak corre-

sponding to the primary vortex in comparison with the

experimental data. They also show a smaller suction-

pressure peak corresponding to the secondary vortex. The

computational results are in fair to good agreement with
the experimental data. For the chord station x = 0.9, the

Cp-curve shows a rapid increase in the pressure coeffi-
cient (a decrease in the suction-pressure coefficient). For

example, the suction-pressure-peak coefficient increases
from a value of -1.4 at x = 0.8 to a value of-l.15 at x =

0.9. Figure 3 shows the total-Mach contours and stream-
lines at the chord stations of x = 0.60, 0.90 and 0.97.

At x = 0.60, the Math contours show an oblique shock

beneath the primary vortex and a subsonic, separated re-

gion to its fight. The streamlines show a secondary sepa-
rated flow and the corresponding secondary vortex. This

separation is due to the shock interaction with the sur-
face boundary-layer flow and is also due to the adverse,

spanwise pressure gradient created by the primary vor-
tex. At x = 0.90, the shock beneath the primary vortex

becomes weak and the primary-vortex size increases. At

x = 0.97, the shock beneath the primary vortex disap-

pears and the primary vortex diffuses and reduces to a
repelling focus, as shown by the streamlines. The details
of the flow structure at x = 0.90 and 0.97 in addition

to the spanwise, pressure-distribution curve at x = 0.90

clearly indicate that the primary vortex is experiencing a
vortex breakdown due to a transverse shock (terminating

shock) which is located between x = 0.80 and x = 0.90.

Figure 4 shows the static pressure contours on the

wing and symmetry planes. The contours clearly show
the location, shape and strength of the terminating shock.

A substantialsupersonicpocket which isbounded by the

terminatingshock and the ray shocks (shocks beneath

the primary-vortexcores)isobserved on the wing plane.
The terminatingshock is locatedat x = 0.83 at the

plane of symmetry, which isin good agreement with the

experimentaldata21,where theshock islocatedatx = 0.84

attheplaneof symmetry. Figure 5 shows thepositionof

ray linesfrom the wing vertex(which aremarked by the

lettersA-H) and the static-pressurevariationalong these

lines.The static-pressurecurves give severalpointsto

generatethe foot-printlineof theterminatingshock.The

terminatingshock isfound to extend from the plane of

symmetry tothewing leadingedge. Itreachesitshighest

strengthatthelocationoftheprimary vortex(linesE-G).

Figure 6 shows the total-Machcontoursand streamlines

on a verticalrayplaneatthe0.68 spanwiselocationwhich

passes through the vortex breakdown. Blow-ups of the

velocityvectorsand streamlineson thisray planearealso

shown in Fig.6. The streamlinesconclusivelyshow a

two-bubble cellvortexbreakdown. Itisa typicalthree-

dimensional vortexbreakdown mode which consistsof

an atlracting saddle point (front), a repelling saddle point
(rear), an attracting focus (top), and a repelling focus

(bottom). Such a breakdown mode is similar to the one
which was captured for an isolated supersonic vortex in
an unbounded domain in Refs. 26 and 27. The location

of the atu'acting saddle point is at 0.97 along the ray line

which corresponds to a location of 0.87 along the axial
direction. The Mach contours show that the front surface

of the vortex-breakdown bubbles is enclosed by a hemi-

spherical shape-like shock surface. In Fig. 18, the details
of the flow structure on the wing and symmetry planes

are shown.

Having established the flow structure of this case, the
Mach number is increased to 0.9 while the angle of attack

is kept fixedat 20 ° .

Case II (Moo = 0.90, t_ = 20 °)

The results of this case are given in Figs. 7-11 and

19. Figure 7 shows the computational spanwise, surface-

pressure coefficient at different chord stations along with

the experimental data of Erickson 21. The computational
results are in good agreement with the experimental data
at x = 0.3 and 0.6. At x = 0.8, the computational re-
suits underestimates the pressure coefficient of the exper-

imental data. The locations of the primary and secondary

vortex cores are in good agreement with those of the ex-

perimental data. It is noticed that the levels of C.v for
the present case are lower than those of Case I (Fig. 2).

Again, the pressure level decreases rapidly at x = 0.90.

Figure 8 shows the total-Mach contours and streamlines
in cross-flow planes at x = 0.60, 0.90 and 0.97. The shock

beneath the primary vortex is observed in the Figures at
x = 0.60 and x = 0.90. For x = 0.90, the shock beneath

the primary vortex is still strong in comparison with that

of Case I (Fig. 3). At x = 0.97, the repelling focus is
observed indicating that vortex breakdown has occurred.

Figure 9 shows that the terminating shock in the cross-

flow plane is located at x = 0.93 within the boundary-

layer, which is in good comparison with the experimen-
tally measured shock of Ref. 21, where it is located at x
= 0.95. The static-pressure contours on the wing plane

show that the terminating shock for Case II (Fig. 9) is

closer to the wailing edge that of Case I (Fig. 4). It should

be noted here that the terminating-shock location in the
outer flow is ahead of its location in the boundary-layer

flow. The static-pressure variations along the ray lines of

Fig. 10 clearly show that the terminating-shock foot print
is located between x = 0.925 and x = 0.95, and that it

extends from the plane of symmeuT to the wing leading

edge. Figure 11 shows the Mach contours and stream-
lines on a vertical ray plane passing through the vortex

breakdown. It is noticed that the vortex breakdown shape
is different from and smaller than that of Case I (Fig. 6).

The attracting saddle point, attracting focus and repelling
saddle point are clearly observed. The repelling focus

is very small. This indicates that the terminating shock
becomes smaller in strength than that of Case I. Figure
19 shows the details of this flow case on the wing and

symmetry planes.



It is concluded that as the f_ Mach number

increases slightly h'om 0.85 to 0.9, the terminating shock

strength decreases and its location moves downstream
from x = 0.84 to x = 0.93. Moreover, the surfaee pressure

levels become smaller than those of Case I.

Next, the Mach number is kept fixed at 0.85 and the

angle of attack is increased to 24*.

Case IH (Moo = 0.85, o_= 24*)

The results of this case are given in Figs. 12-17 and

20. The computational surface-pressure result at x = 0.3

(Fig. 12) is in good agreement with the experimental data
of Erickson 21. However, the computational results, at x
= 0.6 and 0.8 are either overpredicting or underpredicting

the experimental data. Figures 13, 14 and 15 show that
the terminating shock moves upstream to x = 0.753 in the
boundary-layer flow at the plane of symmetry. This is in
good agreement with the experimental data of Ref. 21,
where the shock is located at x = 0.75 in the boundary

layer flow. The terminating-shock location in the outer
flow is ahead of its location in the boundary layer. Figure
16 shows that the vortex-breakdown region is larger than
those of Cases I and II. Moreover, the attracting and
repelling loci are smaller than those of Case I. Figure 20
shows the details of this case on the wing and symmetry

planes.

Thus, it is seen that as the angle of attack increases
from 20° to 24* while the Mach number is kept fixed

at 0.85, the terminating shock moves upsu'eam and the
vortex-breakdown region becomes large. Moreover, the

surface pressure levels become larger than those of Case I.

The computational results show that the flow at the
terminating shock and behind it is time dependent and it
indicates oscillatory motion (The computations have not
been carried out beyond t - 6.0 or 30,000 time steps
with At = 0.0002). In Fig. 17, we show snapshots of the
streamlines and their blow-ups on a ray plane passing

through the vortex-breakdown region. The snapshots
are shown at t = 4.22, 5.16 and 5_52. It is clearly
seen that the vortex breakdown moves upstream showing
different modes. In the same time, the terminating shock

is also moving upstream and slows down to reverse its
direction of motion. This is in complete agreement with

the experimental observations of Bannik and Houtmann 16.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the

implicit, upwind, flux-difference splitting finite-volume
scheme to study the transonic flow field around a 650
sharp-edged, cropped delta wing. First, the flow field has
been constructed for a Reynolds number of 3.23× 106,
a Mach number of 0.85 and an angle of attack of 2(Y

(Case I). A A-shock system consisting of a ray shock be-
neath the primary vortex core and a transverse terminating
shock has been captured. Behind the terminating shock,

the leading-edge vortex core breaks down. Keeping the
Reynolds number constant and the angle of attack fixed
at 20 °, the Mach number is increased to 0.90. The results
of this case (Case ll) show that the terminating shock
moves downstream and the vortex-breakdown region be-
comes smaller than that of Case L Keeping the Reynolds
number constant and the Mach number fixed at 0.85, the

angle of attack is increased to 20°. The results of this
case (Case Ill) show that the terminating shock moves up-
sue.am and the vortex-breakdown region becomes larger
than that of Case I. The computational results are in good

agreement with the experimental data. However, it must
be emphasized that the flow at the terminating shock and
behind it is time dependent while the flow ahead of the
terminating shock is steady. The present paper shows the
structure of the flow field behind the terminating shock
for the first time.
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Fig. 1 Three-dimensional shape and cross-flow plane of a fine grid, 125x85x84.
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Fig. 18 Surface-pressure and Mach contours and particle trace on wing and

symmetry planes; Mo, = 0.85, c_ = 20 °.

- 13





Fig. 19 Surface-pressure and Mach contours and particle trace on wing and

symmetry planes; M_ = 0.90, c_ = 20 °.
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Fig. 20 Surface-pressure and Mach contours and panicle trace on wing and

symmetry planes; _Mo_= 0.85, c_ = 24 °.
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PREDICTION AND CONTROL OF SLENDER.WING ROCK

O_tma A. Kandil" and Abmed A. _llmlm**
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ABSTRACT

The unsteady Euler equations and the Euler equa-
tions of rigid-body dynamics, both written in the mov-
ing frame of reference, are sequentially solved to simu-

late the limit-cycle rock motion of slender della wings.
The governing equations of fluid flow and dynamics
of the present mul6-disciplinary problem are solved us-

ing an implicit, approxima_ly-factored, cenu'al-difference

like, finite-volume scheme and a four-stage Runge-Kutta
scheme, respectively. For the control of wing-rock

motion, leading-edge flaps are forced to osculate and.

symmetrically at prescribed frequency and amplitude
which are tuned in order to suppress the rock modon.

Since the computational grid deforms due to the leading-

edge flaps motion, the grid is dynamically deformed using
the Navier-displacement (ND) equadons. Computational
applications cover locally-conical and flu'ee-dimensioual
solutions for the wing-rock simulation and its control.

INTRODUCTION

The dynamic phenomenon of wing rock is characler-

ized by large-amplitude, high-frequency, rolling oscilla-

tion with a limit-cycle amplitude. The rolling oscillation
is self excited and it is triggered by vortex-flow asymme-

try or vortex breakdown on highly swept della wings at
high angles of attack. The study of this phenomenon is
vital for the dynamic stability and controllability of high

performance aircraft during maneuvering and landing.

The literature shows that several experimental

investigations 1"6 have been conducted to gain basic un-
derstanding of the phenomenon. Nguyen, et al. t tested

a fiat-plate della wing with 80* leading-edge sweep for
forced-oscillation, rotary and free-to-roll tests. The free-
to-roll tests showed that the wing exhibited a rock motion

at angles of attack greater than 25*, and that the rock mo-
tion reached the same limit-cycle response _tive of
the initial conditions, l._vin and Katza tested two delta

wings with leading-edge sweeps of 76* and 80*. They

found that only the wing with the 80* sweep would un-
dergo a rock motion. Nelson and his co-workers _s con-
ducted a series of experimental studies to investigate the

mechanisms responsible for wing rock on a della wing
with 80* leading-edge sweep. Their analysis revealed that

the primary mechanism for the phenomenon was a time
lag in the position of the vortices normal to the wing
surface. Moreover, they concluded, through the analy-

sis of separate contributions of the wing upper and lower

surface-pressure distributions, that the upper surface pres-

sure provides nll of the instability and little damping in the
roll moment and that the lower surface pressm_ Im_vides
the classical roll damping hysteresis. Morris and Ward_
conducted dynamic measurements in both a water tun-

nel mad a wind tunnel on a delta wing with lending-edge
sweep of 80.. Their results showed dmt the measured

hysteresis loops in the water runnel were opposite in di-

rection to those of the wind tunneL They concluded that
the hys_resis direction does not play as decisive a role as

previously thought in initiating and sustaining wing rock.

Erickson _ analyzed experimental data for aircraft

configurations at high angles of attack in an attempt to
reveal the flow Im_Cesses which generate wing rock. He

concluded that wing rock phenomenon for slender wings
is caused by usymmelric-leading,edge vordces and that

the vortex bre_down provides a limiter to the growth
of wing-rock amplitude. He also identified another two
mechanisms for limit-cycle oscillations in roll for ad-
vanced aircraft.

The litenmn'e review showed that numerical simula-

tion of this phenomenon for low speeds has recently been

presented by Konsmdinopoulos, e_ al. 9. This has been

followedby developments of analytical models to inves-
tigate the paramen=s affecting this phenomenon. Nayfeh,
et al. t°'lt have presented two analyaesl models and Hsu

and Lan n have presented one mudytical modeL The im-

proved analytical model of Nayfeh, et M._ proved to
be superior in comparison with the Hsu and Lan model
and more w,curme thin their first model of reference _°.

The model of refexence It acem-ately fitted the rolling mo-
ment coefficient, which was computed by a vortex-lauice

method, using five terms which included the linear nero-
dynamic damping and restoring moments and the nonlin-
ear aerodynamic damping moments. With this model, it

was shown on the phime plane tlmt both the wing rock
and wing-roll divex,gence were possible responses forthe

wing. Hsu and Lan's model cannot predict wing-roll di-
vergence. A serious question which can be raised regard-

ing the work in references 9-12 is:. how accurate the fluid
dynamics solution is, using the vortex lattice method?
Moreover, the fluid dynamics model limits its applica-
bility to low-speed flows and to angles of attack below
the critical value for vortex breakdown. Moreover, the

vortex lattice model also cannot predict separa_! flows
from smooth surfaces.

*Professor and _ Scholar, Depmlma_ o( Medmai_ Enginea'in I
mad Mechanics, AJtcciate Fellow AIAA

**Gradtmte Smdem, S,me _ Member AIAA.



The first comlmtational unsteady solution for the
forced-rolling oscillation of • delta wing, which was
based on the unsteady Euler equations, was presented
by Kandil and Chuang 13. The solution used the locally-

conical flow assumption for supersonic flows in order to

reduce the computational time by an order of magnitude
as compared to that of the three.dimensional solutions.
Forced-pitching oscillation of airfoils were also consid-
ered in a later paper by Kandil and Chuang I'. The first

unsteady three-dimensional Euler solution for the forced-
pitching oscillation of a delta wing was also presented
by Kandil and Chuang 15. The _y N•vier-Stokes
solutions were also used by Kandil and Chtumg 16 for

the forced-rolling oscillation of • delta wing under the
locally-conical flow assumption. Batina 1_ developed a

conical Euler solver, which was based on the use of un-

structured grids, and used it to solve for the flow around
a delta wing undergoing forced-rolling oscillation under

the locally-conical flow assumption. Later on, Lee and
Batina n extended the Euler solver to include a free-to-

roll capability to solve for • freely rolling delta wing
which exhibited wing rock. The solution was based on the
locally-conical flow assumption. In Ref. 19. the present
authors studied symmetric and anti-symmetric forced-

rolling oscillations of the leading-edge flaps of • delta
wing. A hinge is considered at the 75% location of the
local half span and the leading-edge flaps are forced to
oscillate both symmelsically and anti-symmetrically. The

Navier-Stokes and Euler equations are used to solve the

problem along with the Navier-displacement equation to
account for the grid deformation due to the leading-edge
flaps motion. In a later paper by the authors 2e, the effects

of symmetric and anti-symmetric flaps oscillation with
varying frequencies have been investigated for two flow
conditions. With the aid of these studies, the authors21"22

studied the wing rock phenomenon as well as its ac-

tive conu'ol using anti-symmelric tuned oscillations of the

wing leading-edge flaps. The sequential solutions of un-
steady Euler equations and the Navier-displacement equa-

tions along with the Euler equation of rigid-body rolling
motion were used to obtain the solutions for these prob-

lems. The locally-conical flow assumption was also used
throughout these solutions. Simulation of wing-rock and

wing-divergence motions was presented by the •utlu3N
for the three-dimensional flows in Ref. 23.

In the present paper, the unsteady Euler equations and
the Euler equations of rigid-body dynamics, both written
in the moving frame of reference, are used to simulate

the limit-cycle rock motion of slender delta wings. Con-
trolling the wing-rock motion is achieved by using anti-

symmetric forced-oscillation of the wing leading-edge
flaps. For the active control of wing rock, the grid is

dynamically deformed using the ND equations.

FORMULATION

The formulalion of the problem consists of three sets
• of equations. The first set is the unsleady, compressible,

Euler equations which are wril_en relative to • moving
frame of reference. This set is used to compute the
flowtield for steady or unsteady flows. The second set is

the unsteady, lineariz_ Navier-displacement equations
which are used in the moving frame of reference to
compute the grid displacements whenever the leading-
edge flaps oscillate. If the leading-edge flaps do not

oscillate, the ND equations are not used. The third set
is the Euler equations of rigid-body motion for the wing

only or for the wing end its flaps. This set isused to
compute the wing motion for the wing-rock problem. It

is solved in sequence with the first set. For the control
of wing-rock motion, this set is solved in sequence with
the first and second set&

Unsteady Euler Equations

Using the mmsfomuttion equations from the space-

fixed frame of reference to • moving frame of reference

(Reh. 13-15), the non-dimanskmal, unsteady, cumpmm-
ible, Euler equations are mueformed to the moving frame
of reference.Such • transformationeliminatesthe mo-

tionof the computational grid for rigid wings having
time-dependent rigid-body motion. Since the flaps of the
wings m'eallowed very small _lative rigid.bodymotion
per time step of the integration scheme, one must cen-

siderthecomputationalgridas time=dependentwhenever

the grid is updated, and the grid speed in Eqs. (4) and
(5)must be computed. Hence, the Euler equationsare

givenby

wl_

- flowfield vector
q I ,

= 7 =  Lo, p.l, (2)

_==_'(=1,:2,=3,t) (3)

_',, -- inviscid flux

1

= 7[pU=,put Um+ _i_'ap, pu_ U,_

+ _=p,pu_Um + 03_,=p, pUmh - O__p]t (4)

r/. = + (5)



- source term due to rigid-body motion = _S

I
= 7{ O, -P(a,h, "P(a,h,-_(a,h,-_[#'" a.

+ (_x,). a. + _. (a, - _x#') + _. (_x,)

+ (,_x_). (,_xO]}' (6)

f'= I?,- _ - relativevelocity (7)

R = Vo + ,Z,x_ (s)

a, = a° + _x_ + 2_x?° + _x(Ox_) (9)

P P('r 1)(e- V2 (10)

v2
h = 7_ -4- (11)

p(-v- 1) 2 2

The reference parameters for the dimensionless form
of the equations are L,a,:, L/aoc and p_ for the length,

velocity, time and density, respectively. Here, L is a
reference length which is taken as the wing root-chord

length.

In Eqs. (1)-(11), the indicial notation is used for con-
venience. Hence the 'indices k, I, n and s are summation

indices and m is a free index. The range of k, I, m, n.

and s is 1-3 and 0k -- _.

The term -_ represents the ruth component of the
grid velocity. It is set equal to zero when the grid is not
beingupdated. In Eqs. (1)-(11), p is the density, u,, the
relative fluid velocity component, V', and 6, translation

velocity and acceleration of the moving frame, _ and

at the transformation velocity and acceleration from the
space-fixed to the moving frames of reference, _ and

the angular velocity and acceleration of the moving frame,

f the fluid position vector, p the presstne, e and h the total
energy and enthalpy per unit mass relative to the moving

frame and 7 the gas index which is set equal to 1.4.

Unsteady, Linearized Navier-Displacement

Equations

The details of the derivation of these equations are
given by the authors in Ref. 20. The dimensionless form
of these equations is given by

_Vp+ ,M. O [_v(V.fi)+ V,Q] O'QR,. 0_ = p_-_. (12)

where fi is the displacement vector of a grid point. For
each grid point (a fluid element), Eq. (12) is integrated

ova" a short time rmgc (t- t,) where A, p sad p Ere

kap_ constants.TI_ yieldsu_ equation

= p_ + _'.(0 (13)

In F-xt. (12), we use P_,,, to ref_ to the mesh point

Reynolds number which is different fix_m the flow
Reynolds number. This has been done in _ to provide
a limiter for the grid displacement to avoid grid _n

or overlapping, particularly in regions of high flow rever-
sal Equation (13) is the vector form of the ND equations
to be used for computing the grid.pointsdisplacement

subject to displacement boundary and initial conditions.

The equation is a pmbolic equation in time which is in-
tegrated by using the _tern_ing direction implicit (ADD
scheme. The constant ¢_.(_) in Eq. (13) is computed from

the preceding time-hinge integrations.

Euler Equation of Rolling Rigid W'mg With and

Without Oscillating Leading-Edge Flaps:

"FiguoreI shows a sketch of a wing and its flaps which
ate undergoing rolling motions. The rolling motion of
the flai_ is anti-symmeaic. The wing is fixed to an

axile which rotate._ in bearings. The bearings dm_ping
coefficient is A. Torsional springs of stiffness k
assumed at the ends of the axle. The xyz axes which

are fixed to the wing arc assmned to coincide with the

princil_ axes of inertia of the wing.flaps configuration.
At section A-A, the wing half span is /! and the flap
width is/2. The _ of the wing and each flap are mt

and m2, respectively, and their respective ma_-moment
of inerthu around their centev_ of mas_ ate I_t and Ia.
The genes'aliz_ coordinates of the system are taken as 0_
and 0z, which me _ from the horizontal position.
If the aerodynamic moment of the wing and its flaps about

the x-axis is (7, and ff o_ tts_ the Iatgrangian dynamics

for obtaining the governing equations of motion, one gets
the following equation for the 0t coordin_

c, - (2I,,_- .-_-_ - m_l_l_ coe0z_) 0"_t

+ m_lti_O]_ sin 0_

_ m_ m_it iz eo_ O_t)= (z,,_ + 2z,,_ -V_ -

- m,ld, O_sin e,_

-- 2m_lli_0t0_t sill0_! + AO l + _01 (14)

where 0_ = 0_ - 0_, I_,, and/as, are the rrmss mon_nt

of ine_la of the wing and the flap, respectively,
the wing _ of rotation. If the angles 0t and 0_ _¢e
assumed to be small then the finem'ized equmion
to

c,-
_ m, m,ltl,)Ot= (z,,, + _z,,, T_-

+ AtOt + kOz (15)



On the other hand, if the flaps arc not deflected and the
wing and its flaps roll as a rigid body, Eq. (15) becomes

6",= I,,01 + _el + t'el (16)

where I,, is the mass moment of inertial of the composite
wing-flaps configuration without relative motion.

Equation (16) governs the wing-rock problem while
Eq. (15) governs the linearized control of wing-rock prob-
lem by using a prescribed motion of the leading-edge
flaps.

COMPUTATIONAL SCHEMES

The computational scheme used m solve Eqs. (1)-
(l l) is an implicit, appmximately-fac_, cenlntlly-
differenced, finite-volume scheme 13"*s. Added second-
orderand fourth-order explicit dissipation terms are used
in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Ja-
cobian matrices of the implicit operator on the left-hand
sideof the differenceequationam centrally-differenced
inspace,and implicitsecond-orderdissipationtermsare
addedfortheschemestability.The left-handsidespa-
tialoperatorisapproximatelyfactoredandthedifference
equation is solved in three sweeps in the _t _2 and _3
directions, respectively.

For the wing-rock problem. Eq. (16) is solved using
a four-stage Runge-KuUa scheme. Starting from known
initial conditions for 0 and 0, the equation is explicitly
integrated in time in sequence with the fluid dynamics
equations, .Eqs. (1-11). Equation (16) is used to solve for
0, 0 and 0 while Eqs. (1-11) are used to solve for C,.
If the initial C, is nonzeTo, a case of asymmetric s.ready
flow at initial conditions, the initial values of 0 and Oarc

set equal to zero and the motion is initiated by the initial
rolling moment

For the conuol of the wing-rock problem using flaps
oscillation, the motion of the ,flaps; 0al, 0al and 0_1 ale
specified and Eq. (14) (nonlinear equation) _ Eq. (1.5)
(linearized equation) is used to solve for Oh 01 and 01.
The fluid dynamics equations, Eqs. (1)-(11), and the grid-
deformation equation, F,q. (13), arc sequentially used to
solvefor C,.

COMPUTATIONAL APPLICATIONS
AND DISCUSSION

Simulation of Wing-Rock-Motion

(Locally-Conical Flow)

A delta wing of sweep-back angle of 80.. at an angle
of attack of 35° and a Math numbcx of 1.4 is considered.

The wing has an elliptic section with sharpened leading
edges. The wing mass-moment of inertia about its x axis
is 0.02, the bearing damping coefficient is 0.2 and the
spring stiffness is 0.'74. The unsteady Eulet equations

axesolved for locaflly-conk.ai flows. The compulational
gridisof64x64x2 inthewrapammul,normalmadaxial
directions,respectively. For theseflowcomlitiom,the

readyflowisasymmemc.'.",andhenceC, # 0att=0.
Therefore, we set _ = _ = O. The Enlet equations of
fluid flow and of flood-body dynamics an_ sequentially
integrated accurately in time with At - 0.0025. Figures
2 and 3 show the results of this case. Figure 2 shows the
time responses of 01, Ct and C_ and the corresponding
phase planes of 01 vz 01, Cr vz 01 and C= vz 01. The time

show the long time, t _ 7, it takes to build up
the growing roll-angle response. The responses clearly
show that the 81 and _ continuouslyincreasein time
with increasing frequencies. The limit-cycle response is
reached at t = 21 which is clearly shown on the phase
planes. The mean amplitude of 01 is --0.5°. its maximum
is 40" and its minimum is --41°. Figure 3 shows map
shotsof the surface-pressure coefficient and cross-flow
velocity at the insurers corresponding to points 1 and 2
on Fig. 2.The strong asymmetric mcqionof the primary
vorticesate clearlyseen. Also,thesurface-pressure-

coefficient response clearly shows the generation of the
restating rolling moment to the wing motion.

Active Control of Wlng Rock Using

Leading-Edge Flaps Oseination

The next step is to control the wing rock
of the previous case. For this purpose a leading.edge
flap hinge is assumed to he at the 76% location of
the local-half-span length. The flaps motion is innv-
duced at to - 13.02 when 01 - --4* and C_ - 0.0.
The flaps motion is anti-symmeaic and is givea by
021(t)= 0_laaxsinkf(t- to),where _ istheflapre-
ducedf_.quency.Withtheaidofthepreviousvaluesof

01,Ct and k ofthewing (canbe measuredby sensors
to feed back the leading.edge flaps motion), we chose

02_=,x = -0.50 and _ = 6.7. Equation (15) for the wing-
flaps motion is sequenthny integrated accurately in time,
with At = 0.0025, along with the Euler equations of fluid
flow, and the ND equation is used for the grid deforma-
lion. Figure 4 shows the time reaponses of 0t andC.r for
the wing. It is clearlyseenthat0t reslxm_ is damped
within t - h - 13 with a me.m value of 5". However,
the wing is still mcillating periodicallyaround this mean
position with a small amplitude. Next, the flaps motion
is modified by dividing the amplitude 031_ by 1 + (t
- to) so that it decays with time. Figure 5 shows the
steady response of the wing at t = 30. The wing assumes
an equih'btium pmition of 5" without any mcillation. To
check that this is a stable equil_i.'um position, the wing
is disuabed at t = 40 with a sinai1 01. Figure 5 also shows
the time reaponses of ¢1 and C, after the dismdatw.e con-
finning that the equilibrium position is ruble. Figme 6
shows the phase planes of the whole _ history of
01 and C.r.Figures 7-9 show the same re_ts as those of
Figs. 4-6 when the same control is applied at h = 23.27,
which isduring the limitcycleresponse.
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Simulation of Wing-Rock Motion (Three-

Dimensional Flow)

Next, we consider the three-<fimensional.flow simula-

zionof the wing-n)ck problem.

A sharp-edged delta wing with a leading-edge sweep
of 80_ isconsideredfor the computationalapplications.

The angleofattackissetat30° and thefreestreamMach

number ischosen as 0.3 for low speed simulation.The

wing mass-moment of inertiaabout itsaxis is0.285,the

bearingsdamping coefficientis 0.15 and the torsional

springsstiffnessis0.74. The unsteadyEuler equations
arc solved forthe three-dimensionalflows.The bound-

aryof thecomputationaldomain consistsofa hemispher-

icalsurfacewith itcenterat the wing trailingedge on

itslineof geomcmc symmetry. The hemisphericalsur-

face isconnected to a cylindricalaftersurfacewith its

axiscoincidingwith the wing axis. The hemispherical

and cylindricalradiiare two root-chord lengths and the

downsn'cam, circularexitboundary isattwo root-chord

Icngthsfrom the wing trailingedge.The gridconsistsof

48x32x32 gridpointsin the wrap-around,normal and

axialdirections,respectively.The gridisgeneratedin

thecrossflowplanesusinga modifiedJoukowski transfor-

mation,which isappliedat the grid-chordstationswith

cxponentialclusteringatthe wing surface.

Since the steady flow solutionis asymmetric, C,

in Eq. (16) isof non-zero value and hence Eq. (16) is

initiallyinhomogcncous. At t= 0, we set0" = 0" = 0

and releasethe wing with itsinitialM: value as the

drivingrollingmoment. At t = At, Eq. (16)ofthe win.g
dynamics isintegratedtoobtain0t and hence 0j and 0j

(At = 0.005). Then, F.qs.(l-ll)of the fluidflow are

integratedtoobtainthecomponents oftheflowfieldvector

and hence p and C,. Next,t isincreasedto2At and the

sequentialintegrationof the dynamics equationand the

fluidflowequationsisrepeated.The sequentialsolutions

are repeatedundl the limit-cycleampEtude response is
rcachcd

In Fig. I0, we show the'rollangle,rolling-moment

coefficient,C,, and normal-forcecoefficient.C,, versus

timc.Significanttransientrespons_ developin thetime

rangeof t = 0 ---*22, wherein theamplitudesof the re.

sponscsincreaseand decrease. Thereafter,t > 22, the

amplitudesof the responsescontinuouslyincreaseuntil

t = 95. At t > 95, the amplitudesand frequenciesof

the rcsponsesbecome periodicreaching the limit-cycle

response.During thelimit-cycleresponse,themaximum

rollangle,01re,x,isI0",the minimum rollangle,01Ilia,

is-ll° and theperiodof oscillationis3.53,which cor-

respondsto a frequencyof 1.78.With At I=0.005,each

cycle of oscillationin the limit-cycleresponserequires

706 time steps.The shown responses,up to t = 140,

required28,000 time steps.

Next, we consider one cycle of the limit-cycle
and analyze the roll angle, rolling-moment-

coefficient and normal-low, e-coefficient responses to gain
physical insight of the wing-rock phenomenon. For this

purpose, we show in Fig. 11 0s, C, and C, vz. t in

the range of t = 135.19 --, 138.72. This period of os-
cillation ismarked by the numbers I,2, 3, 4 and 5 in

Fig.1I.Inthe firstquarterof thecycle(I---*2),theroll

angle of the left side of the wing decreases from O* -.
-II*and thewing mils intheclockwise(CW) direction,
themlring-moment coefficientincreasesand changessign
from -0.057 --* 0.0 --* + 0.023 and the normal-force co-

efficient decreases and then increases from 2.68 --* 2.65

-, 2.75. It is important to notice that the rolling moment
changes its sign which means that the rolling moment

during the first part of this quarter of the cycle is in the
CW direction (the same direction as the motion) and in

the second pert of this quarter of the cycle is in the CCW
direction (the opposite direction of the motion). Hence,

the rolling moment increases the neptive angle in the first
part and then it limits the g_wth of the roll angle in the
second part. In the second quarter of the cycle (2 --, 3)

the roll angle increases from -11" --, 0and the wing mils
in the CCW direction, the roiling-moment coefficient in-
creases and then decreases from +0.023 --, 0.045 --, 0.04
and the normal-fot_e coefficients increases and then de-

creases from 2.75 --* 3.0 -* 2.84. The rolling-moment
coefficient is in the CCW direction (the same direction

the motion). In the third quarter of the cycle 0-,4) the
roll angle increases frcfn 0 ---* 10° and the wing keeps its

rolling motion intheCCW direcdon, the rolling-moment
coefficient decreases and changes sign from +0.04 --, 0
--, -0.038 and the normal-force coefficient decreases and

then increases from 2.84 ---, 2.78 --* 2.86. Again, it is no-

ticed that the rolling moment changes its sign from CCW

to CW directions and limits the roll angle growth.

In Figs. 12 and 13, we show snapshots at points 2 and

4, respectively; of the crms-flow-velocity vecto_ and the
static-pressure contours at the chord _ati_ of 0.54, 0.63
and 0.79 and the surface-_ coefficient at the cho_

stations of 0.54 and 0.63. In Fig. 12, the primary v_ex
on the right side is nearer m the upper wing surface than
the one on the left side. Moreover, the primary vortex

on the right is further away from the plane of geometric
symmetry in cmnparison to the one on the left. The

surface-presmre curves show large peaks on the right side
and that the surface-_ difference on the right side
is larger than the one on the left side. This results into

a CCW rollingmoment at this maximum negative roll
angle of -11". In Fig. 13. the oplxeite process occurs:

the surface-pressure difference on the left side is larger
than the one on the right side and this resultsinto a

CW rolling moment at this maximum positive roll angle
of +10". These results are cmsistem with those of the

experimental data of Refs. 3 and 4.

In Fig. 14, we show the variations of the maximum

static pressure of the vortex cores of the primary vortices
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on the left and right sides versus the roll angle for the

chord station of 0.54. The numbers on the figures cor-
respond to those in Fig. 11. Since the maximum static

pressure of the core is proportional to the vortex-core
strength, it is obviously seen that the primary vortex on

the right side has a greater strength at point 2 as compared
to that on the left side. The strength differential between
the right and left vortices along with the locations of the
vortex cores contributes substantially to the net total CCW

rolling moment which limits the negative growth of the
roll angle and reverses the wing motion. Similarly, it is
concluded that the strength differential between the left
and right voices at point 4 substantially contributes to

the net total CW rolling moment which limits the positive
growth of the roll angle and reverses the wing motion.

In Fig. 15, we split the rolling-moment coefficient
into restoring and damping components similar to Kon-

stadinopoulos, et al. 9. F'u'st' the rolling-moment coeffi-
cient C, is fitted using the following expansions in terms
of 0 and 0:

C, = alO + a20 + 0303 + a_O_O

+ a_020 + aeO3 + aTO_ + a,040

+ a90203 4- alo0203 4- a1£040 4- at205 (17)

The coefficients at - a j2 are determined using a least-
squares fit. A comparison of the original (-o-) and fitted

(-x-) rolling-moment coefficients is shown in Fig. 15.
Next, we split the fitted-rolling-moment coefficient into a

restoring part, M,, and a damping part, Md, as follows:

Mr-" (al 4- as02 4- al,04)0

+ (a3 + a,oO')O 3 + a,O 5 (18)

M, = + .,e + .,e')0
+ + 4-.,#+ 09)

In Fig. 15, we also show .44",and 0 vc_'us time, and
M_ and 0 versus time. MoreoveL we show on these

figures the numbers 1, 2, 3, 4 and 5 which correspond
to the same numbers in Figs. 11 and 14. In the first
quarter of the cycle (1-.2), the roll angle 0 decreases

from 0 --* -11 °, the restoring rolling moment becomes
negative during the first pert and positive during the
second partand the damping rolling moment, which is

negative at point 1, increases during the first part and

becomes almost zero during the second part. It is very
interestingtonoticethat.44,and M,f are negativeduring

the first part and hence they ate in the same direction

as the motion. During the second part, M, becomes
positive reaching its maximum at point 2 when 0m. =

-11 ° and hence it limits the angle growth. During the
same second part, Md becomes almost zero indicating a

loss of damping rolling moment. In the second quarter

of the cycle (2-.3), M, stays almost constant during the
lust lmrXand drops to zero in fl_e second imx wben the

roll angle becomes 0". During the same second qmmer,
M_ continuously increases from 0 tO a maximum positive
value when the roll angle becomes 0. In the third quarter

of the cycle 0-4), a similar interaction OP O, M, and

M_ as that of the first quarter (1-2) occun except with
opposite signs. These conclusions are exactly similar

to those of Ref. 9. Hence, the loss of damping rolling
moment is responsible for the wing-rock motion.

CONCLUDING REMARKS

The multidisciplinary problem of wing-rock motion

and itsactive controlhas beea simulatedusingthe un-

steady,compressible, Euler equations; the Euler equa-
tion of rigid-body dynamiocs and the ND equations for

the grid deformation. The fluid flow Eulerequationsare

solved using an implicit, approximately factored, eenural-

difference, finite-volume scheme; rigid-hody Eulerequa-
tionis solved using a four-stage, Runge-Kutm scheme and
the ND equations me solved using an ADI scheme. Sim-

ulation of the wing-rock problem is obtained for a della

wing which is mounted on an axle with lmsional springs
and the axle is free to rotate in bearings with viscous
damping. The wing starts its motion under the effect of m

initial rolling moment due to the initially asynunelricflow
at zm'o roll angle and zero angular velocity. For the ac-

tive control of wing-reck motion, a tuned anfi-symmeu'ic
lending-edge flaps oscillation is used m achieve that pur-

pose. Also, it has heen shown tlmt the hysteresis re_
sponses of position and surength of the asymmetric right

and left primary vortices are responsible for the wing rock
motion. Moreover. it has also been shown that the loss

of aerodynamic damping rolling moment at the zero an-

gular velocity value is a main reason for the wing rock

motion. These conclusions are consistent with the pre-
vious findings of the experimental 3,4 and computafionaP
research work.
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